File size: 9,254 Bytes
cc49567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
---
language:
- en
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
tags:
- code
- coding
- programming
- algorithms
- systems-programming
- code-generation
- complexity-analysis
- qwen2.5
- fine-tuned
model-index:
- name: wraith-coder-7b
  results:
  - task:
      type: text-generation
      name: Code Generation
    metrics:
    - type: conciseness
      value: 62.6
      name: Response Reduction
    - type: coverage
      value: 60
      name: Complexity Analysis Coverage
---

# Wraith Coder 7B

Wraith Coder 7B is a specialized code generation model fine-tuned from Qwen2.5-Coder-7B-Instruct. Through iterative training focused on algorithmic reasoning, systems programming, and technical communication optimization, Wraith achieves superior information density while maintaining implementation correctness.

## Model Description

**Developed by:** Vanta Research  
**Base Model:** Qwen/Qwen2.5-Coder-7B-Instruct  
**Model Type:** Causal Language Model  
**Language(s):** English  
**License:** Apache 2.0  
**Fine-tuned from:** Qwen2.5-Coder-7B-Instruct

### Model Architecture

- **Parameters:** 7.6 billion
- **Architecture:** Transformer decoder with 28 layers
- **Hidden Size:** 3584
- **Attention Heads:** 28 (4 key-value heads)
- **Context Length:** 32,768 tokens
- **Vocabulary Size:** 152,064 tokens

## Training Methodology

### Iterative Fine-Tuning Strategy

Wraith Coder 7B was developed through three iterations of progressive capability enhancement:

**Iteration 1: Personality Establishment (4,256 examples)**
- Identity formation and communication style
- Logical reasoning patterns
- Technical terminology usage
- Foundation for signal-dense communication

**Iteration 2: Coding Restoration (5,500 examples)**
- 2,040 conversational coding examples
- 2,040 computer science fundamentals
- 920 mathematical reasoning problems
- 200 identity reinforcement examples
- 300 technical communication patterns

**Iteration 3: Advanced Capabilities (4,488 examples)**
- 1,007 architectural design patterns
- 1,041 algorithm design and analysis
- 1,064 debugging techniques
- 1,026 systems programming concepts
- 150 identity anchors
- 200 communication pattern reinforcement

### Training Configuration

- **Method:** Low-Rank Adaptation (LoRA)
- **Rank:** 16
- **Alpha:** 32
- **Dropout:** 0.05
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Learning Rate:** 5e-5
- **Batch Size:** 8 (effective)
- **Epochs:** 2 per iteration
- **Optimizer:** AdamW 8-bit
- **Training Framework:** Unsloth

## Performance Evaluation

### Comprehensive 20-Question Coding Assessment

A rigorous evaluation across diverse programming challenges demonstrates measurable improvements over the base model:

#### Response Efficiency
- **Base Model:** 57,999 characters average (2,900 per question)
- **Wraith Coder:** 21,686 characters average (1,084 per question)
- **Improvement:** 62.6% reduction in response length while maintaining correctness

#### Technical Analysis Coverage
- **Base Model:** Complexity analysis in 40% of responses
- **Wraith Coder:** Complexity analysis in 60% of responses
- **Improvement:** 50% increase in Big-O notation coverage

#### Question-Specific Performance

| Category | Conciseness Gain | Key Strength |
|----------|------------------|--------------|
| Data Structures | 80-90% | Space complexity analysis |
| Algorithms | 75-85% | Time complexity trade-offs |
| Systems Design | 70-80% | Scalability considerations |
| Concurrency | 65-75% | Synchronization patterns |
| Architecture | 50-60% | Design pattern selection |

### Comparative Analysis

**Test Case: LRU Cache Implementation**
- Base Model: 120+ lines with verbose documentation
- Wraith Coder: 45 lines with design rationale
- Result: Equivalent correctness, 62% shorter, includes algorithmic justification

**Test Case: Rate Limiter Design**
- Base Model: 100+ lines, conceptual confusion between algorithms
- Wraith Coder: 25 lines, correct token bucket implementation with edge case analysis
- Result: Superior correctness and clarity

**Test Case: Binary Tree Serialization**
- Base Model: Single approach with lengthy explanation
- Wraith Coder: Two approaches (DFS and BFS) with trade-off comparison
- Result: Multiple solutions with selection guidance

## Intended Use

### Primary Applications

**Senior Software Engineering**
- Code review and optimization suggestions
- Algorithm selection and complexity analysis
- Systems design pattern recommendations
- Performance optimization strategies

**Technical Interview Preparation**
- Concise algorithmic explanations
- Multiple solution approaches
- Time and space complexity analysis
- Trade-off articulation

**Production Development**
- Efficient technical documentation
- Design decision rationale
- Scalability considerations
- Edge case identification

### Out-of-Scope Use

This model is optimized for experienced developers who value information density. It may not be suitable for:
- Beginner programming education requiring verbose step-by-step explanations
- Non-technical audiences requiring extensive context
- Applications requiring social conversational patterns
- Domains outside software engineering and computer science

## Limitations and Considerations

### Technical Limitations

1. **Condensed Communication Style**
   - Assumes reader familiarity with computer science fundamentals
   - May omit explanatory context that beginners require
   - Prioritizes technical precision over accessibility

2. **Model Size Constraints**
   - 7B parameter model has inherent knowledge limitations
   - May not match larger models on extremely complex problems
   - Context window limits for very large codebases

3. **Domain Specialization**
   - Optimized for algorithmic and systems programming
   - May have reduced performance on domain-specific applications (e.g., embedded systems, game engines)
   - Training data focused on general-purpose programming

### Deployment Considerations

- **Compute Requirements:** Minimum 8GB VRAM for 4-bit quantization
- **Inference Speed:** Similar to base Qwen2.5-Coder-7B
- **Quantization:** Tested with 4-bit (Q4_K_M) quantization maintaining quality

## Ethical Considerations

### Training Data

All training data was synthetically generated or derived from publicly available educational resources. No proprietary code or copyrighted material was used in fine-tuning.

### Bias and Fairness

The model inherits biases present in the base Qwen2.5-Coder-7B model. Additional fine-tuning focused on technical capabilities and communication style rather than bias mitigation.

### Responsible Use

Users should:
- Validate all generated code before production deployment
- Apply appropriate code review processes
- Consider model outputs as suggestions requiring human verification
- Ensure compliance with relevant licensing for generated code

## Technical Details

### Chat Template

The model uses the Qwen ChatML format:

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
{assistant_message}<|im_end|>
```

### Recommended Inference Parameters

```python
{
  "temperature": 0.7,
  "top_p": 0.9,
  "top_k": 40,
  "repeat_penalty": 1.1,
  "max_tokens": 2048
}
```

### Quantization Support

Tested and validated quantization formats:
- FP16: Full precision baseline
- Q8_0: Minimal quality loss
- Q4_K_M: Recommended balance (4.4GB)
- Q4_0: Maximum compression

## Usage Example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "vanta-research/wraith-coder-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

messages = [
    {"role": "system", "content": "You are a helpful coding assistant."},
    {"role": "user", "content": "Implement quicksort with complexity analysis."}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Model Card Authors

Vanta Research

## Model Card Contact

For questions or issues regarding this model, please open an issue in the model repository.

## Citation

If you use this model in your research or applications, please cite:

```bibtex
@misc{wraith-coder-7b,
  author = {Vanta Research},
  title = {Wraith Coder 7B: Signal-Dense Code Generation through Iterative Fine-Tuning},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/vanta-research/wraith-coder-7b}}
}
```

## Acknowledgments

This model builds upon Qwen2.5-Coder-7B-Instruct developed by Alibaba Cloud. We acknowledge their contribution to open-source language model research.

## Version History

- **v1.0.0** (2025-11-19): Initial release with iteration 3 training complete
  - 62.6% response reduction while maintaining correctness
  - 60% complexity analysis coverage across 20-question benchmark
  - Production-ready for senior engineering applications