Text Generation
Transformers
Safetensors
English
qwen2
code
coding
programming
algorithms
systems-programming
code-generation
complexity-analysis
qwen2.5
fine-tuned
vanta-research
vanta-research-entities
vanta-research-code-models
wraith
conversational
Eval Results
text-generation-inference
4-bit precision
bitsandbytes
File size: 9,254 Bytes
cc49567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
---
language:
- en
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
tags:
- code
- coding
- programming
- algorithms
- systems-programming
- code-generation
- complexity-analysis
- qwen2.5
- fine-tuned
model-index:
- name: wraith-coder-7b
results:
- task:
type: text-generation
name: Code Generation
metrics:
- type: conciseness
value: 62.6
name: Response Reduction
- type: coverage
value: 60
name: Complexity Analysis Coverage
---
# Wraith Coder 7B
Wraith Coder 7B is a specialized code generation model fine-tuned from Qwen2.5-Coder-7B-Instruct. Through iterative training focused on algorithmic reasoning, systems programming, and technical communication optimization, Wraith achieves superior information density while maintaining implementation correctness.
## Model Description
**Developed by:** Vanta Research
**Base Model:** Qwen/Qwen2.5-Coder-7B-Instruct
**Model Type:** Causal Language Model
**Language(s):** English
**License:** Apache 2.0
**Fine-tuned from:** Qwen2.5-Coder-7B-Instruct
### Model Architecture
- **Parameters:** 7.6 billion
- **Architecture:** Transformer decoder with 28 layers
- **Hidden Size:** 3584
- **Attention Heads:** 28 (4 key-value heads)
- **Context Length:** 32,768 tokens
- **Vocabulary Size:** 152,064 tokens
## Training Methodology
### Iterative Fine-Tuning Strategy
Wraith Coder 7B was developed through three iterations of progressive capability enhancement:
**Iteration 1: Personality Establishment (4,256 examples)**
- Identity formation and communication style
- Logical reasoning patterns
- Technical terminology usage
- Foundation for signal-dense communication
**Iteration 2: Coding Restoration (5,500 examples)**
- 2,040 conversational coding examples
- 2,040 computer science fundamentals
- 920 mathematical reasoning problems
- 200 identity reinforcement examples
- 300 technical communication patterns
**Iteration 3: Advanced Capabilities (4,488 examples)**
- 1,007 architectural design patterns
- 1,041 algorithm design and analysis
- 1,064 debugging techniques
- 1,026 systems programming concepts
- 150 identity anchors
- 200 communication pattern reinforcement
### Training Configuration
- **Method:** Low-Rank Adaptation (LoRA)
- **Rank:** 16
- **Alpha:** 32
- **Dropout:** 0.05
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Learning Rate:** 5e-5
- **Batch Size:** 8 (effective)
- **Epochs:** 2 per iteration
- **Optimizer:** AdamW 8-bit
- **Training Framework:** Unsloth
## Performance Evaluation
### Comprehensive 20-Question Coding Assessment
A rigorous evaluation across diverse programming challenges demonstrates measurable improvements over the base model:
#### Response Efficiency
- **Base Model:** 57,999 characters average (2,900 per question)
- **Wraith Coder:** 21,686 characters average (1,084 per question)
- **Improvement:** 62.6% reduction in response length while maintaining correctness
#### Technical Analysis Coverage
- **Base Model:** Complexity analysis in 40% of responses
- **Wraith Coder:** Complexity analysis in 60% of responses
- **Improvement:** 50% increase in Big-O notation coverage
#### Question-Specific Performance
| Category | Conciseness Gain | Key Strength |
|----------|------------------|--------------|
| Data Structures | 80-90% | Space complexity analysis |
| Algorithms | 75-85% | Time complexity trade-offs |
| Systems Design | 70-80% | Scalability considerations |
| Concurrency | 65-75% | Synchronization patterns |
| Architecture | 50-60% | Design pattern selection |
### Comparative Analysis
**Test Case: LRU Cache Implementation**
- Base Model: 120+ lines with verbose documentation
- Wraith Coder: 45 lines with design rationale
- Result: Equivalent correctness, 62% shorter, includes algorithmic justification
**Test Case: Rate Limiter Design**
- Base Model: 100+ lines, conceptual confusion between algorithms
- Wraith Coder: 25 lines, correct token bucket implementation with edge case analysis
- Result: Superior correctness and clarity
**Test Case: Binary Tree Serialization**
- Base Model: Single approach with lengthy explanation
- Wraith Coder: Two approaches (DFS and BFS) with trade-off comparison
- Result: Multiple solutions with selection guidance
## Intended Use
### Primary Applications
**Senior Software Engineering**
- Code review and optimization suggestions
- Algorithm selection and complexity analysis
- Systems design pattern recommendations
- Performance optimization strategies
**Technical Interview Preparation**
- Concise algorithmic explanations
- Multiple solution approaches
- Time and space complexity analysis
- Trade-off articulation
**Production Development**
- Efficient technical documentation
- Design decision rationale
- Scalability considerations
- Edge case identification
### Out-of-Scope Use
This model is optimized for experienced developers who value information density. It may not be suitable for:
- Beginner programming education requiring verbose step-by-step explanations
- Non-technical audiences requiring extensive context
- Applications requiring social conversational patterns
- Domains outside software engineering and computer science
## Limitations and Considerations
### Technical Limitations
1. **Condensed Communication Style**
- Assumes reader familiarity with computer science fundamentals
- May omit explanatory context that beginners require
- Prioritizes technical precision over accessibility
2. **Model Size Constraints**
- 7B parameter model has inherent knowledge limitations
- May not match larger models on extremely complex problems
- Context window limits for very large codebases
3. **Domain Specialization**
- Optimized for algorithmic and systems programming
- May have reduced performance on domain-specific applications (e.g., embedded systems, game engines)
- Training data focused on general-purpose programming
### Deployment Considerations
- **Compute Requirements:** Minimum 8GB VRAM for 4-bit quantization
- **Inference Speed:** Similar to base Qwen2.5-Coder-7B
- **Quantization:** Tested with 4-bit (Q4_K_M) quantization maintaining quality
## Ethical Considerations
### Training Data
All training data was synthetically generated or derived from publicly available educational resources. No proprietary code or copyrighted material was used in fine-tuning.
### Bias and Fairness
The model inherits biases present in the base Qwen2.5-Coder-7B model. Additional fine-tuning focused on technical capabilities and communication style rather than bias mitigation.
### Responsible Use
Users should:
- Validate all generated code before production deployment
- Apply appropriate code review processes
- Consider model outputs as suggestions requiring human verification
- Ensure compliance with relevant licensing for generated code
## Technical Details
### Chat Template
The model uses the Qwen ChatML format:
```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
{assistant_message}<|im_end|>
```
### Recommended Inference Parameters
```python
{
"temperature": 0.7,
"top_p": 0.9,
"top_k": 40,
"repeat_penalty": 1.1,
"max_tokens": 2048
}
```
### Quantization Support
Tested and validated quantization formats:
- FP16: Full precision baseline
- Q8_0: Minimal quality loss
- Q4_K_M: Recommended balance (4.4GB)
- Q4_0: Maximum compression
## Usage Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "vanta-research/wraith-coder-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
messages = [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": "Implement quicksort with complexity analysis."}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Model Card Authors
Vanta Research
## Model Card Contact
For questions or issues regarding this model, please open an issue in the model repository.
## Citation
If you use this model in your research or applications, please cite:
```bibtex
@misc{wraith-coder-7b,
author = {Vanta Research},
title = {Wraith Coder 7B: Signal-Dense Code Generation through Iterative Fine-Tuning},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/vanta-research/wraith-coder-7b}}
}
```
## Acknowledgments
This model builds upon Qwen2.5-Coder-7B-Instruct developed by Alibaba Cloud. We acknowledge their contribution to open-source language model research.
## Version History
- **v1.0.0** (2025-11-19): Initial release with iteration 3 training complete
- 62.6% response reduction while maintaining correctness
- 60% complexity analysis coverage across 20-question benchmark
- Production-ready for senior engineering applications
|