Text Generation
Transformers
Safetensors
English
qwen2
code
coding
programming
algorithms
systems-programming
code-generation
complexity-analysis
qwen2.5
fine-tuned
vanta-research
vanta-research-entities
vanta-research-code-models
wraith
conversational
Eval Results
text-generation-inference
4-bit precision
bitsandbytes
Tyler Williams
Initial commit: Wraith Coder 7B - Concise code assistant via iterative fine-tuning
cc49567
| { | |
| "model_name": "wraith-coder-7b", | |
| "base_model": "Qwen/Qwen2.5-Coder-7B-Instruct", | |
| "version": "1.0.0", | |
| "release_date": "2025-11-19", | |
| "architecture": { | |
| "type": "CausalLM", | |
| "parameters": "7.6B", | |
| "layers": 28, | |
| "hidden_size": 3584, | |
| "attention_heads": 28, | |
| "kv_heads": 4, | |
| "context_length": 32768, | |
| "vocab_size": 152064 | |
| }, | |
| "training": { | |
| "method": "LoRA Fine-tuning", | |
| "iterations": 3, | |
| "total_examples": 14244, | |
| "lora_rank": 16, | |
| "lora_alpha": 32, | |
| "learning_rate": 5e-5, | |
| "epochs_per_iteration": 2, | |
| "optimizer": "adamw_8bit" | |
| }, | |
| "performance": { | |
| "conciseness_improvement": "62.6%", | |
| "complexity_analysis_coverage": "60%", | |
| "base_model_complexity_coverage": "40%", | |
| "evaluation_questions": 20, | |
| "correctness_rate": "100%" | |
| }, | |
| "recommended_parameters": { | |
| "temperature": 0.7, | |
| "top_p": 0.9, | |
| "top_k": 40, | |
| "repeat_penalty": 1.1, | |
| "max_tokens": 2048 | |
| }, | |
| "quantization": { | |
| "supported_formats": ["fp16", "q8_0", "q4_k_m", "q4_0"], | |
| "recommended": "q4_k_m", | |
| "model_size_q4_k_m": "4.4GB" | |
| }, | |
| "license": "Apache-2.0", | |
| "languages": ["en"], | |
| "tags": [ | |
| "code-generation", | |
| "algorithms", | |
| "systems-programming", | |
| "complexity-analysis", | |
| "qwen2.5", | |
| "fine-tuned" | |
| ] | |
| } | |