vc3vc3 commited on
Commit
a4dded9
·
verified ·
1 Parent(s): 5f33823

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +281 -299
README.md CHANGED
@@ -1,299 +1,281 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE
5
- pipeline_tag: text-generation
6
- base_model:
7
- - Qwen/Qwen3-0.6B-Base
8
- ---
9
-
10
- # Qwen3-0.6B
11
- <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
12
- <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
13
- </a>
14
-
15
- ## Qwen3 Highlights
16
-
17
- Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
18
-
19
- - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
20
- - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
21
- - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
22
- - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
23
- - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
24
-
25
- ## Model Overview
26
-
27
- **Qwen3-0.6B** has the following features:
28
- - Type: Causal Language Models
29
- - Training Stage: Pretraining & Post-training
30
- - Number of Parameters: 0.6B
31
- - Number of Paramaters (Non-Embedding): 0.44B
32
- - Number of Layers: 28
33
- - Number of Attention Heads (GQA): 16 for Q and 8 for KV
34
- - Context Length: 32,768
35
-
36
- For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
37
-
38
- > [!TIP]
39
- > If you encounter significant endless repetitions, please refer to the [Best Practices](#best-practices) section for optimal sampling parameters, and set the ``presence_penalty`` to 1.5.
40
-
41
- ## Quickstart
42
-
43
- The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
44
-
45
- With `transformers<4.51.0`, you will encounter the following error:
46
- ```
47
- KeyError: 'qwen3'
48
- ```
49
-
50
- The following contains a code snippet illustrating how to use the model generate content based on given inputs.
51
- ```python
52
- from transformers import AutoModelForCausalLM, AutoTokenizer
53
-
54
- model_name = "Qwen/Qwen3-0.6B"
55
-
56
- # load the tokenizer and the model
57
- tokenizer = AutoTokenizer.from_pretrained(model_name)
58
- model = AutoModelForCausalLM.from_pretrained(
59
- model_name,
60
- torch_dtype="auto",
61
- device_map="auto"
62
- )
63
-
64
- # prepare the model input
65
- prompt = "Give me a short introduction to large language model."
66
- messages = [
67
- {"role": "user", "content": prompt}
68
- ]
69
- text = tokenizer.apply_chat_template(
70
- messages,
71
- tokenize=False,
72
- add_generation_prompt=True,
73
- enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
74
- )
75
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
76
-
77
- # conduct text completion
78
- generated_ids = model.generate(
79
- **model_inputs,
80
- max_new_tokens=32768
81
- )
82
- output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
83
-
84
- # parsing thinking content
85
- try:
86
- # rindex finding 151668 (</think>)
87
- index = len(output_ids) - output_ids[::-1].index(151668)
88
- except ValueError:
89
- index = 0
90
-
91
- thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
92
- content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
93
-
94
- print("thinking content:", thinking_content)
95
- print("content:", content)
96
- ```
97
-
98
- For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
99
- - SGLang:
100
- ```shell
101
- python -m sglang.launch_server --model-path Qwen/Qwen3-0.6B --reasoning-parser qwen3
102
- ```
103
- - vLLM:
104
- ```shell
105
- vllm serve Qwen/Qwen3-0.6B --enable-reasoning --reasoning-parser deepseek_r1
106
- ```
107
-
108
- For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
109
-
110
- ## Switching Between Thinking and Non-Thinking Mode
111
-
112
- > [!TIP]
113
- > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
114
- > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
115
-
116
- ### `enable_thinking=True`
117
-
118
- By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
119
-
120
- ```python
121
- text = tokenizer.apply_chat_template(
122
- messages,
123
- tokenize=False,
124
- add_generation_prompt=True,
125
- enable_thinking=True # True is the default value for enable_thinking
126
- )
127
- ```
128
-
129
- In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
130
-
131
- > [!NOTE]
132
- > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
133
-
134
-
135
- ### `enable_thinking=False`
136
-
137
- We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
138
-
139
- ```python
140
- text = tokenizer.apply_chat_template(
141
- messages,
142
- tokenize=False,
143
- add_generation_prompt=True,
144
- enable_thinking=False # Setting enable_thinking=False disables thinking mode
145
- )
146
- ```
147
-
148
- In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
149
-
150
- > [!NOTE]
151
- > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
152
-
153
- ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
154
-
155
- We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
156
-
157
- Here is an example of a multi-turn conversation:
158
-
159
- ```python
160
- from transformers import AutoModelForCausalLM, AutoTokenizer
161
-
162
- class QwenChatbot:
163
- def __init__(self, model_name="Qwen/Qwen3-0.6B"):
164
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
165
- self.model = AutoModelForCausalLM.from_pretrained(model_name)
166
- self.history = []
167
-
168
- def generate_response(self, user_input):
169
- messages = self.history + [{"role": "user", "content": user_input}]
170
-
171
- text = self.tokenizer.apply_chat_template(
172
- messages,
173
- tokenize=False,
174
- add_generation_prompt=True
175
- )
176
-
177
- inputs = self.tokenizer(text, return_tensors="pt")
178
- response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
179
- response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
180
-
181
- # Update history
182
- self.history.append({"role": "user", "content": user_input})
183
- self.history.append({"role": "assistant", "content": response})
184
-
185
- return response
186
-
187
- # Example Usage
188
- if __name__ == "__main__":
189
- chatbot = QwenChatbot()
190
-
191
- # First input (without /think or /no_think tags, thinking mode is enabled by default)
192
- user_input_1 = "How many r's in strawberries?"
193
- print(f"User: {user_input_1}")
194
- response_1 = chatbot.generate_response(user_input_1)
195
- print(f"Bot: {response_1}")
196
- print("----------------------")
197
-
198
- # Second input with /no_think
199
- user_input_2 = "Then, how many r's in blueberries? /no_think"
200
- print(f"User: {user_input_2}")
201
- response_2 = chatbot.generate_response(user_input_2)
202
- print(f"Bot: {response_2}")
203
- print("----------------------")
204
-
205
- # Third input with /think
206
- user_input_3 = "Really? /think"
207
- print(f"User: {user_input_3}")
208
- response_3 = chatbot.generate_response(user_input_3)
209
- print(f"Bot: {response_3}")
210
- ```
211
-
212
- > [!NOTE]
213
- > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
214
- > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
215
-
216
- ## Agentic Use
217
-
218
- Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
219
-
220
- To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
221
- ```python
222
- from qwen_agent.agents import Assistant
223
-
224
- # Define LLM
225
- llm_cfg = {
226
- 'model': 'Qwen3-0.6B',
227
-
228
- # Use the endpoint provided by Alibaba Model Studio:
229
- # 'model_type': 'qwen_dashscope',
230
- # 'api_key': os.getenv('DASHSCOPE_API_KEY'),
231
-
232
- # Use a custom endpoint compatible with OpenAI API:
233
- 'model_server': 'http://localhost:8000/v1', # api_base
234
- 'api_key': 'EMPTY',
235
-
236
- # Other parameters:
237
- # 'generate_cfg': {
238
- # # Add: When the response content is `<think>this is the thought</think>this is the answer;
239
- # # Do not add: When the response has been separated by reasoning_content and content.
240
- # 'thought_in_content': True,
241
- # },
242
- }
243
-
244
- # Define Tools
245
- tools = [
246
- {'mcpServers': { # You can specify the MCP configuration file
247
- 'time': {
248
- 'command': 'uvx',
249
- 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
250
- },
251
- "fetch": {
252
- "command": "uvx",
253
- "args": ["mcp-server-fetch"]
254
- }
255
- }
256
- },
257
- 'code_interpreter', # Built-in tools
258
- ]
259
-
260
- # Define Agent
261
- bot = Assistant(llm=llm_cfg, function_list=tools)
262
-
263
- # Streaming generation
264
- messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
265
- for responses in bot.run(messages=messages):
266
- pass
267
- print(responses)
268
- ```
269
-
270
- ## Best Practices
271
-
272
- To achieve optimal performance, we recommend the following settings:
273
-
274
- 1. **Sampling Parameters**:
275
- - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
276
- - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
277
- - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
278
-
279
- 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
280
-
281
- 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
282
- - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
283
- - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
284
-
285
- 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
286
-
287
- ### Citation
288
-
289
- If you find our work helpful, feel free to give us a cite.
290
-
291
- ```
292
- @misc{qwen3,
293
- title = {Qwen3},
294
- url = {https://qwenlm.github.io/blog/qwen3/},
295
- author = {Qwen Team},
296
- month = {April},
297
- year = {2025}
298
- }
299
- ```
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - Qwen/Qwen3-0.6B-Base
8
+ ---
9
+
10
+ ## Qwen3 Highlights
11
+
12
+ Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
13
+
14
+ - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
15
+ - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
16
+ - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
17
+ - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
18
+ - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
19
+
20
+ ## Model Overview
21
+
22
+ **Qwen3-0.6B** has the following features:
23
+ - Type: Causal Language Models
24
+ - Training Stage: Pretraining & Post-training
25
+ - Number of Parameters: 0.6B
26
+ - Number of Paramaters (Non-Embedding): 0.44B
27
+ - Number of Layers: 28
28
+ - Number of Attention Heads (GQA): 16 for Q and 8 for KV
29
+ - Context Length: 32,768
30
+
31
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
32
+
33
+ > [!TIP]
34
+ > If you encounter significant endless repetitions, please refer to the [Best Practices](#best-practices) section for optimal sampling parameters, and set the ``presence_penalty`` to 1.5.
35
+
36
+ ## Quickstart
37
+
38
+ The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
39
+
40
+ With `transformers<4.51.0`, you will encounter the following error:
41
+ ```
42
+ KeyError: 'qwen3'
43
+ ```
44
+
45
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+
49
+ model_name = "Qwen/Qwen3-0.6B"
50
+
51
+ # load the tokenizer and the model
52
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ model_name,
55
+ torch_dtype="auto",
56
+ device_map="auto"
57
+ )
58
+
59
+ # prepare the model input
60
+ prompt = "Give me a short introduction to large language model."
61
+ messages = [
62
+ {"role": "user", "content": prompt}
63
+ ]
64
+ text = tokenizer.apply_chat_template(
65
+ messages,
66
+ tokenize=False,
67
+ add_generation_prompt=True,
68
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
69
+ )
70
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
71
+
72
+ # conduct text completion
73
+ generated_ids = model.generate(
74
+ **model_inputs,
75
+ max_new_tokens=32768
76
+ )
77
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
78
+
79
+ # parsing thinking content
80
+ try:
81
+ # rindex finding 151668 (</think>)
82
+ index = len(output_ids) - output_ids[::-1].index(151668)
83
+ except ValueError:
84
+ index = 0
85
+
86
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
87
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
88
+
89
+ print("thinking content:", thinking_content)
90
+ print("content:", content)
91
+ ```
92
+
93
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
94
+ - SGLang:
95
+ ```shell
96
+ python -m sglang.launch_server --model-path Qwen/Qwen3-0.6B --reasoning-parser qwen3
97
+ ```
98
+ - vLLM:
99
+ ```shell
100
+ vllm serve Qwen/Qwen3-0.6B --enable-reasoning --reasoning-parser deepseek_r1
101
+ ```
102
+
103
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
104
+
105
+ ## Switching Between Thinking and Non-Thinking Mode
106
+
107
+ > [!TIP]
108
+ > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
109
+ > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
110
+
111
+ ### `enable_thinking=True`
112
+
113
+ By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
114
+
115
+ ```python
116
+ text = tokenizer.apply_chat_template(
117
+ messages,
118
+ tokenize=False,
119
+ add_generation_prompt=True,
120
+ enable_thinking=True # True is the default value for enable_thinking
121
+ )
122
+ ```
123
+
124
+ In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
125
+
126
+ > [!NOTE]
127
+ > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
128
+
129
+
130
+ ### `enable_thinking=False`
131
+
132
+ We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
133
+
134
+ ```python
135
+ text = tokenizer.apply_chat_template(
136
+ messages,
137
+ tokenize=False,
138
+ add_generation_prompt=True,
139
+ enable_thinking=False # Setting enable_thinking=False disables thinking mode
140
+ )
141
+ ```
142
+
143
+ In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
144
+
145
+ > [!NOTE]
146
+ > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
147
+
148
+ ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
149
+
150
+ We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
151
+
152
+ Here is an example of a multi-turn conversation:
153
+
154
+ ```python
155
+ from transformers import AutoModelForCausalLM, AutoTokenizer
156
+
157
+ class QwenChatbot:
158
+ def __init__(self, model_name="Qwen/Qwen3-0.6B"):
159
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
160
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
161
+ self.history = []
162
+
163
+ def generate_response(self, user_input):
164
+ messages = self.history + [{"role": "user", "content": user_input}]
165
+
166
+ text = self.tokenizer.apply_chat_template(
167
+ messages,
168
+ tokenize=False,
169
+ add_generation_prompt=True
170
+ )
171
+
172
+ inputs = self.tokenizer(text, return_tensors="pt")
173
+ response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
174
+ response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
175
+
176
+ # Update history
177
+ self.history.append({"role": "user", "content": user_input})
178
+ self.history.append({"role": "assistant", "content": response})
179
+
180
+ return response
181
+
182
+ # Example Usage
183
+ if __name__ == "__main__":
184
+ chatbot = QwenChatbot()
185
+
186
+ # First input (without /think or /no_think tags, thinking mode is enabled by default)
187
+ user_input_1 = "How many r's in strawberries?"
188
+ print(f"User: {user_input_1}")
189
+ response_1 = chatbot.generate_response(user_input_1)
190
+ print(f"Bot: {response_1}")
191
+ print("----------------------")
192
+
193
+ # Second input with /no_think
194
+ user_input_2 = "Then, how many r's in blueberries? /no_think"
195
+ print(f"User: {user_input_2}")
196
+ response_2 = chatbot.generate_response(user_input_2)
197
+ print(f"Bot: {response_2}")
198
+ print("----------------------")
199
+
200
+ # Third input with /think
201
+ user_input_3 = "Really? /think"
202
+ print(f"User: {user_input_3}")
203
+ response_3 = chatbot.generate_response(user_input_3)
204
+ print(f"Bot: {response_3}")
205
+ ```
206
+
207
+ > [!NOTE]
208
+ > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
209
+ > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
210
+
211
+ ## Agentic Use
212
+
213
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
214
+
215
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
216
+ ```python
217
+ from qwen_agent.agents import Assistant
218
+
219
+ # Define LLM
220
+ llm_cfg = {
221
+ 'model': 'Qwen3-0.6B',
222
+
223
+ # Use the endpoint provided by Alibaba Model Studio:
224
+ # 'model_type': 'qwen_dashscope',
225
+ # 'api_key': os.getenv('DASHSCOPE_API_KEY'),
226
+
227
+ # Use a custom endpoint compatible with OpenAI API:
228
+ 'model_server': 'http://localhost:8000/v1', # api_base
229
+ 'api_key': 'EMPTY',
230
+
231
+ # Other parameters:
232
+ # 'generate_cfg': {
233
+ # # Add: When the response content is `<think>this is the thought</think>this is the answer;
234
+ # # Do not add: When the response has been separated by reasoning_content and content.
235
+ # 'thought_in_content': True,
236
+ # },
237
+ }
238
+
239
+ # Define Tools
240
+ tools = [
241
+ {'mcpServers': { # You can specify the MCP configuration file
242
+ 'time': {
243
+ 'command': 'uvx',
244
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
245
+ },
246
+ "fetch": {
247
+ "command": "uvx",
248
+ "args": ["mcp-server-fetch"]
249
+ }
250
+ }
251
+ },
252
+ 'code_interpreter', # Built-in tools
253
+ ]
254
+
255
+ # Define Agent
256
+ bot = Assistant(llm=llm_cfg, function_list=tools)
257
+
258
+ # Streaming generation
259
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
260
+ for responses in bot.run(messages=messages):
261
+ pass
262
+ print(responses)
263
+ ```
264
+
265
+ ## Best Practices
266
+
267
+ To achieve optimal performance, we recommend the following settings:
268
+
269
+ 1. **Sampling Parameters**:
270
+ - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
271
+ - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
272
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
273
+
274
+ 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
275
+
276
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
277
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
278
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
279
+
280
+ 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
281
+