|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForQuestionAnswering, AutoModel, pipeline |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("verseAI/vai-GPT-NeoXT-Chat-Base-20B") |
|
model = AutoModelForCausalLM.from_pretrained("verseAI/vai-GPT-NeoXT-Chat-Base-20B", device_map="auto", load_in_8bit=True) |
|
|
|
|
|
|
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[List[Dict[str, float]]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pipeline(inputs, **parameters) |
|
else: |
|
prediction = self.pipeline(inputs) |
|
|
|
return prediction |
|
|
|
""" |
|
inputs = self.tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8) |
|
output_str = self.tokenizer.decode(outputs[0]) |
|
print(output_str) |
|
# return output_str |
|
return {"generated_text": output_str} |
|
""" |
|
|
|
|