Update README.md
Browse files
README.md
CHANGED
|
@@ -5,7 +5,19 @@ language:
|
|
| 5 |
license: mit
|
| 6 |
base_model: openai/whisper-large-v3-turbo
|
| 7 |
tags:
|
| 8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
datasets:
|
| 10 |
- vhdm/persian-voice-v1.1
|
| 11 |
metrics:
|
|
@@ -26,57 +38,101 @@ model-index:
|
|
| 26 |
value: 14.065335753176045
|
| 27 |
---
|
| 28 |
|
| 29 |
-
|
| 30 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the vhdm/persian-voice-v1 dataset.
|
| 35 |
-
It achieves the following results on the evaluation set:
|
| 36 |
-
- Loss: 0.1445
|
| 37 |
-
- Wer: 14.0653
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
-
|
| 57 |
-
-
|
| 58 |
-
-
|
| 59 |
-
-
|
| 60 |
-
-
|
| 61 |
-
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
| 70 |
-
| 0.219 | 0.6150 | 1000 | 0.2093 | 22.0750 |
|
| 71 |
-
| 0.1191 | 1.2300 | 2000 | 0.1698 | 17.8463 |
|
| 72 |
-
| 0.1051 | 1.8450 | 3000 | 0.1485 | 15.7895 |
|
| 73 |
-
| 0.0644 | 2.4600 | 4000 | 0.1530 | 16.0375 |
|
| 74 |
-
| 0.0289 | 3.0750 | 5000 | 0.1445 | 14.0653 |
|
| 75 |
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
- Transformers 4.52.4
|
| 80 |
-
- Pytorch 2.7.1+cu118
|
| 81 |
-
- Datasets 3.6.0
|
| 82 |
-
- Tokenizers 0.21.1
|
|
|
|
| 5 |
license: mit
|
| 6 |
base_model: openai/whisper-large-v3-turbo
|
| 7 |
tags:
|
| 8 |
+
- whisper
|
| 9 |
+
- whisper-large-v3
|
| 10 |
+
- persian
|
| 11 |
+
- farsi
|
| 12 |
+
- speech-recognition
|
| 13 |
+
- asr
|
| 14 |
+
- automatic-speech-recognition
|
| 15 |
+
- audio
|
| 16 |
+
- transformers
|
| 17 |
+
- generated_from_trainer
|
| 18 |
+
- h100
|
| 19 |
+
- huggingface
|
| 20 |
+
- vhdm
|
| 21 |
datasets:
|
| 22 |
- vhdm/persian-voice-v1.1
|
| 23 |
metrics:
|
|
|
|
| 38 |
value: 14.065335753176045
|
| 39 |
---
|
| 40 |
|
| 41 |
+
# π’ vhdm/whisper-v3-turbo-persian-v1.1
|
|
|
|
| 42 |
|
| 43 |
+
π§ **Fine-tuned Whisper Large V3 Turbo for Persian Speech Recognition**
|
| 44 |
|
| 45 |
+
This model is a fine-tuned version of [`openai/whisper-large-v3-turbo`](https://huggingface.co/openai/whisper-large-v3-turbo) trained specifically on high-quality Persian speech data from the [`vhdm/persian-voice-v1`](https://huggingface.co/datasets/vhdm/persian-voice-v1) dataset.
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## π§ͺ Evaluation Results
|
| 50 |
+
|
| 51 |
+
| Metric | Value |
|
| 52 |
+
|--------|-------|
|
| 53 |
+
| **Final Validation Loss** | 0.1445 |
|
| 54 |
+
| **Word Error Rate (WER)** | **14.07%** |
|
| 55 |
+
|
| 56 |
+
The model shows consistent improvement over training and reaches a solid WER of ~14% on clean Persian speech data.
|
| 57 |
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
## π§ Model Description
|
| 61 |
|
| 62 |
+
This model aims to bring high-accuracy **automatic speech recognition (ASR)** to Persian language using the Whisper architecture. By leveraging OpenAI's powerful Whisper Large V3 Turbo backbone and carefully curated Persian data, it can transcribe Persian audio with high fidelity.
|
| 63 |
+
|
| 64 |
+
---
|
| 65 |
|
| 66 |
+
## β
Intended Use
|
| 67 |
|
| 68 |
+
This model is best suited for:
|
| 69 |
|
| 70 |
+
- π± Transcribing Persian voice notes
|
| 71 |
+
- π£οΈ Real-time or batch ASR for Persian podcasts, videos, and interviews
|
| 72 |
+
- π Creating searchable transcripts of Persian audio content
|
| 73 |
+
- π§© Fine-tuning or domain adaptation for Persian speech tasks
|
| 74 |
|
| 75 |
+
### π« Limitations
|
| 76 |
+
|
| 77 |
+
- The model is fine-tuned on clean audio from specific sources and may perform poorly on noisy, accented, or dialectal speech.
|
| 78 |
+
- Not optimized for real-time streaming ASR (though inference is fast).
|
| 79 |
+
- It may occasionally produce hallucinations (incorrect but plausible words), a common issue in Whisper models.
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
|
| 83 |
+
## π Training Data
|
| 84 |
+
|
| 85 |
+
The model was trained on the [`vhdm/persian-voice-v1`](https://huggingface.co/datasets/vhdm/persian-voice-v1) dataset, a curated collection of Persian speech recordings with high-quality transcriptions.
|
| 86 |
+
|
| 87 |
+
---
|
| 88 |
|
| 89 |
+
## βοΈ Training Procedure
|
| 90 |
|
| 91 |
+
- **Optimizer**: AdamW (`betas=(0.9, 0.999)`, `eps=1e-08`)
|
| 92 |
+
- **Learning Rate**: 1e-5
|
| 93 |
+
- **Batch Sizes**: Train - 16 | Eval - 8
|
| 94 |
+
- **Scheduler**: Linear with 500 warmup steps
|
| 95 |
+
- **Mixed Precision**: Native AMP (automatic mixed precision)
|
| 96 |
+
- **Seed**: 42
|
| 97 |
+
- **Training Steps**: 5000
|
| 98 |
+
|
| 99 |
+
---
|
| 100 |
+
|
| 101 |
+
## β±οΈ Training Time & Hardware
|
| 102 |
+
|
| 103 |
+
The model was trained using an **NVIDIA H100 GPU**, and the full fine-tuning process took approximately **20 hours**.
|
| 104 |
+
|
| 105 |
+
---
|
| 106 |
+
|
| 107 |
+
## π Training Progress
|
| 108 |
+
|
| 109 |
+
| Step | Training Loss | Validation Loss | WER (%) |
|
| 110 |
+
|------|----------------|-----------------|----------|
|
| 111 |
+
| 1000 | 0.2190 | 0.2093 | 22.07 |
|
| 112 |
+
| 2000 | 0.1191 | 0.1698 | 17.85 |
|
| 113 |
+
| 3000 | 0.1051 | 0.1485 | 15.79 |
|
| 114 |
+
| 4000 | 0.0644 | 0.1530 | 16.03 |
|
| 115 |
+
| 5000 | 0.0289 | 0.1445 | **14.07** |
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## π§° Framework Versions
|
| 120 |
+
|
| 121 |
+
- `transformers`: 4.52.4
|
| 122 |
+
- `torch`: 2.7.1+cu118
|
| 123 |
+
- `datasets`: 3.6.0
|
| 124 |
+
- `tokenizers`: 0.21.1
|
| 125 |
+
|
| 126 |
+
---
|
| 127 |
|
| 128 |
+
## π Try it out
|
| 129 |
|
| 130 |
+
You can load and test the model using π€ Transformers:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
```python
|
| 133 |
+
from transformers import pipeline
|
| 134 |
|
| 135 |
+
pipe = pipeline("automatic-speech-recognition", model="vhdm/whisper-v3-turbo-persian-v1.1")
|
| 136 |
+
result = pipe("path_to_persian_audio.wav")
|
| 137 |
+
print(result["text"])
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|