Upload HfMoondream
Browse files- config.json +4 -6
- config.py +83 -0
- generation_config.json +0 -2
- hf_moondream.py +123 -0
- image_crops.py +208 -0
- layers.py +63 -0
- model.safetensors +2 -2
- moondream.py +535 -179
- region.py +82 -0
- rope.py +48 -0
- text.py +167 -0
- utils.py +41 -0
- vision.py +133 -0
- weights.py +292 -0
config.json
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
-
"AutoConfig": "
|
7 |
-
"AutoModelForCausalLM": "
|
8 |
},
|
|
|
9 |
"model_type": "moondream1",
|
10 |
-
"text_config": {
|
11 |
-
"model_type": "phi"
|
12 |
-
},
|
13 |
"torch_dtype": "float16",
|
14 |
"transformers_version": "4.44.0"
|
15 |
}
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"HfMoondream"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
+
"AutoConfig": "hf_moondream.HfConfig",
|
7 |
+
"AutoModelForCausalLM": "hf_moondream.HfMoondream"
|
8 |
},
|
9 |
+
"config": {},
|
10 |
"model_type": "moondream1",
|
|
|
|
|
|
|
11 |
"torch_dtype": "float16",
|
12 |
"transformers_version": "4.44.0"
|
13 |
}
|
config.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import Dict, List, Optional
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass(frozen=True)
|
6 |
+
class TextConfig:
|
7 |
+
dim: int = 2048
|
8 |
+
n_layers: int = 24
|
9 |
+
vocab_size: int = 51200
|
10 |
+
max_context: int = 2048
|
11 |
+
n_heads: int = 32
|
12 |
+
prefix_attn: int = 730
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass(frozen=True)
|
16 |
+
class VisionConfig:
|
17 |
+
enc_dim: int = 1152
|
18 |
+
enc_patch_size: int = 14
|
19 |
+
enc_n_layers: int = 27
|
20 |
+
enc_ff_dim: int = 4304
|
21 |
+
enc_n_heads: int = 16
|
22 |
+
proj_out_dim: int = 2048
|
23 |
+
crop_size: int = 378
|
24 |
+
in_channels: int = 3
|
25 |
+
max_crops: int = 12
|
26 |
+
overlap_margin: int = 4
|
27 |
+
proj_inner_dim: int = 8192
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass(frozen=True)
|
31 |
+
class RegionConfig:
|
32 |
+
dim: int = 2048
|
33 |
+
coord_feat_dim: int = 256
|
34 |
+
coord_out_dim: int = 1024
|
35 |
+
size_feat_dim: int = 512
|
36 |
+
size_out_dim: int = 2048
|
37 |
+
inner_dim: int = 8192
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass(frozen=True)
|
41 |
+
class TokenizerConfig:
|
42 |
+
bos_id: int = 50256
|
43 |
+
eos_id: int = 50256
|
44 |
+
templates: Dict[str, Optional[Dict[str, List[int]]]] = field(
|
45 |
+
default_factory=lambda: {
|
46 |
+
"caption": {
|
47 |
+
"short": [198, 198, 16438, 8305, 25],
|
48 |
+
"normal": [198, 198, 24334, 1159, 25],
|
49 |
+
},
|
50 |
+
"query": {"prefix": [198, 198, 24361, 25], "suffix": [198, 198, 33706, 25]},
|
51 |
+
"detect": {"prefix": [198, 198, 47504, 25], "suffix": [628]},
|
52 |
+
"point": {"prefix": [198, 198, 12727, 25], "suffix": [628]},
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
@dataclass(frozen=True)
|
58 |
+
class MoondreamConfig:
|
59 |
+
text: TextConfig = TextConfig()
|
60 |
+
vision: VisionConfig = VisionConfig()
|
61 |
+
region: RegionConfig = RegionConfig()
|
62 |
+
tokenizer: TokenizerConfig = TokenizerConfig()
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def from_dict(cls, config_dict: dict):
|
66 |
+
text_config = TextConfig(**config_dict.get("text", {}))
|
67 |
+
vision_config = VisionConfig(**config_dict.get("vision", {}))
|
68 |
+
region_config = RegionConfig(**config_dict.get("region", {}))
|
69 |
+
tokenizer_config = TokenizerConfig(**config_dict.get("tokenizer", {}))
|
70 |
+
return cls(
|
71 |
+
text=text_config,
|
72 |
+
vision=vision_config,
|
73 |
+
region=region_config,
|
74 |
+
tokenizer=tokenizer_config,
|
75 |
+
)
|
76 |
+
|
77 |
+
def to_dict(self):
|
78 |
+
return {
|
79 |
+
"text": self.text.__dict__,
|
80 |
+
"vision": self.vision.__dict__,
|
81 |
+
"region": self.region.__dict__,
|
82 |
+
"tokenizer": self.tokenizer.__dict__,
|
83 |
+
}
|
generation_config.json
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
-
"bos_token_id": 1,
|
4 |
-
"eos_token_id": 2,
|
5 |
"transformers_version": "4.44.0"
|
6 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
|
|
|
|
3 |
"transformers_version": "4.44.0"
|
4 |
}
|
hf_moondream.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
+
|
3 |
+
from .config import MoondreamConfig
|
4 |
+
from .moondream import MoondreamModel
|
5 |
+
|
6 |
+
# Files sometimes don't get loaded without these...
|
7 |
+
from .image_crops import *
|
8 |
+
from .vision import *
|
9 |
+
from .text import *
|
10 |
+
from .region import *
|
11 |
+
from .utils import *
|
12 |
+
|
13 |
+
|
14 |
+
def extract_question(text):
|
15 |
+
prefix = "<image>\n\nQuestion: "
|
16 |
+
suffix = "\n\nAnswer:"
|
17 |
+
|
18 |
+
if text.startswith(prefix) and text.endswith(suffix):
|
19 |
+
return text[len(prefix) : -len(suffix)]
|
20 |
+
else:
|
21 |
+
return None
|
22 |
+
|
23 |
+
|
24 |
+
class HfConfig(PretrainedConfig):
|
25 |
+
_auto_class = "AutoConfig"
|
26 |
+
model_type = "moondream1"
|
27 |
+
|
28 |
+
def __init__(self, **kwargs):
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
self.config = {}
|
31 |
+
|
32 |
+
|
33 |
+
class HfMoondream(PreTrainedModel):
|
34 |
+
_auto_class = "AutoModelForCausalLM"
|
35 |
+
config_class = HfConfig
|
36 |
+
|
37 |
+
def __init__(self, config):
|
38 |
+
super().__init__(config)
|
39 |
+
self.model = MoondreamModel(MoondreamConfig.from_dict(config.config))
|
40 |
+
|
41 |
+
@property
|
42 |
+
def encode_image(self):
|
43 |
+
return self.model.encode_image
|
44 |
+
|
45 |
+
@property
|
46 |
+
def query(self):
|
47 |
+
return self.model.query
|
48 |
+
|
49 |
+
@property
|
50 |
+
def caption(self):
|
51 |
+
return self.model.caption
|
52 |
+
|
53 |
+
@property
|
54 |
+
def detect(self):
|
55 |
+
return self.model.detect
|
56 |
+
|
57 |
+
@property
|
58 |
+
def point(self):
|
59 |
+
return self.model.point
|
60 |
+
|
61 |
+
@property
|
62 |
+
def detect_gaze(self):
|
63 |
+
return self.model.detect_gaze
|
64 |
+
|
65 |
+
def answer_question(
|
66 |
+
self,
|
67 |
+
image_embeds,
|
68 |
+
question,
|
69 |
+
tokenizer=None,
|
70 |
+
chat_history="",
|
71 |
+
result_queue=None,
|
72 |
+
max_new_tokens=256,
|
73 |
+
**kwargs
|
74 |
+
):
|
75 |
+
answer = self.query(image_embeds, question)["answer"].strip()
|
76 |
+
|
77 |
+
if result_queue is not None:
|
78 |
+
result_queue.put(answer)
|
79 |
+
return answer
|
80 |
+
|
81 |
+
def batch_answer(self, images, prompts, tokenizer=None, **kwargs):
|
82 |
+
answers = []
|
83 |
+
for image, prompt in zip(images, prompts):
|
84 |
+
answers.append(self.query(image, prompt)["answer"].strip())
|
85 |
+
return answers
|
86 |
+
|
87 |
+
def _unsupported_exception(self):
|
88 |
+
raise NotImplementedError(
|
89 |
+
"This method is not supported in the latest version of moondream. "
|
90 |
+
"Consider upgrading to the updated API spec, or alternately pin "
|
91 |
+
"to 'revision=2024-08-26'."
|
92 |
+
)
|
93 |
+
|
94 |
+
def generate(self, image_embeds, prompt, tokenizer, max_new_tokens=128, **kwargs):
|
95 |
+
"""
|
96 |
+
Function definition remains unchanged for backwards compatibility.
|
97 |
+
Be aware that tokenizer, max_new_takens, and kwargs are ignored.
|
98 |
+
"""
|
99 |
+
prompt_extracted = extract_question(prompt)
|
100 |
+
if prompt_extracted is not None:
|
101 |
+
answer = self.model.query(image=image_embeds, question=prompt_extracted, stream=False)[
|
102 |
+
"answer"
|
103 |
+
]
|
104 |
+
else:
|
105 |
+
image_embeds = self.encode_image(image_embeds)
|
106 |
+
prompt_tokens = torch.tensor(
|
107 |
+
[self.model.tokenizer.encode(prompt).ids],
|
108 |
+
device=self.device,
|
109 |
+
)
|
110 |
+
def generator():
|
111 |
+
for token in self.model._generate_text(
|
112 |
+
prompt_tokens, image_embeds.kv_cache, image_embeds.pos, max_new_tokens
|
113 |
+
):
|
114 |
+
yield token
|
115 |
+
answer = "".join(list(generator()))
|
116 |
+
|
117 |
+
return [answer]
|
118 |
+
|
119 |
+
def get_input_embeddings(self):
|
120 |
+
return super().get_input_embeddings()
|
121 |
+
|
122 |
+
def input_embeds(self, *args, **kwargs):
|
123 |
+
self._unsupported_exception()
|
image_crops.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import pyvips
|
5 |
+
|
6 |
+
from typing import TypedDict
|
7 |
+
|
8 |
+
|
9 |
+
def select_tiling(
|
10 |
+
height: int, width: int, crop_size: int, max_crops: int
|
11 |
+
) -> tuple[int, int]:
|
12 |
+
"""
|
13 |
+
Determine the optimal number of tiles to cover an image with overlapping crops.
|
14 |
+
"""
|
15 |
+
if height <= crop_size or width <= crop_size:
|
16 |
+
return (1, 1)
|
17 |
+
|
18 |
+
# Minimum required tiles in each dimension
|
19 |
+
min_h = math.ceil(height / crop_size)
|
20 |
+
min_w = math.ceil(width / crop_size)
|
21 |
+
|
22 |
+
# If minimum required tiles exceed max_crops, return proportional distribution
|
23 |
+
if min_h * min_w > max_crops:
|
24 |
+
ratio = math.sqrt(max_crops / (min_h * min_w))
|
25 |
+
return (max(1, math.floor(min_h * ratio)), max(1, math.floor(min_w * ratio)))
|
26 |
+
|
27 |
+
# Perfect aspect-ratio tiles that satisfy max_crops
|
28 |
+
h_tiles = math.floor(math.sqrt(max_crops * height / width))
|
29 |
+
w_tiles = math.floor(math.sqrt(max_crops * width / height))
|
30 |
+
|
31 |
+
# Ensure we meet minimum tile requirements
|
32 |
+
h_tiles = max(h_tiles, min_h)
|
33 |
+
w_tiles = max(w_tiles, min_w)
|
34 |
+
|
35 |
+
# If we exceeded max_crops, scale down the larger dimension
|
36 |
+
if h_tiles * w_tiles > max_crops:
|
37 |
+
if w_tiles > h_tiles:
|
38 |
+
w_tiles = math.floor(max_crops / h_tiles)
|
39 |
+
else:
|
40 |
+
h_tiles = math.floor(max_crops / w_tiles)
|
41 |
+
|
42 |
+
return (max(1, h_tiles), max(1, w_tiles))
|
43 |
+
|
44 |
+
|
45 |
+
class OverlapCropOutput(TypedDict):
|
46 |
+
crops: np.ndarray
|
47 |
+
tiling: tuple[int, int]
|
48 |
+
|
49 |
+
|
50 |
+
def overlap_crop_image(
|
51 |
+
image: np.ndarray,
|
52 |
+
overlap_margin: int,
|
53 |
+
max_crops: int,
|
54 |
+
base_size: tuple[int, int] = (378, 378),
|
55 |
+
patch_size: int = 14,
|
56 |
+
) -> OverlapCropOutput:
|
57 |
+
"""
|
58 |
+
Process an image using an overlap-and-resize cropping strategy with margin handling.
|
59 |
+
|
60 |
+
This function takes an input image and creates multiple overlapping crops with
|
61 |
+
consistent margins. It produces:
|
62 |
+
1. A single global crop resized to base_size
|
63 |
+
2. Multiple overlapping local crops that maintain high resolution details
|
64 |
+
3. A patch ordering matrix that tracks correspondence between crops
|
65 |
+
|
66 |
+
The overlap strategy ensures:
|
67 |
+
- Smooth transitions between adjacent crops
|
68 |
+
- No loss of information at crop boundaries
|
69 |
+
- Proper handling of features that cross crop boundaries
|
70 |
+
- Consistent patch indexing across the full image
|
71 |
+
|
72 |
+
Args:
|
73 |
+
image (np.ndarray): Input image as numpy array with shape (H,W,C)
|
74 |
+
base_size (tuple[int,int]): Target size for crops, default (378,378)
|
75 |
+
patch_size (int): Size of patches in pixels, default 14
|
76 |
+
overlap_margin (int): Margin size in patch units, default 4
|
77 |
+
max_crops (int): Maximum number of crops allowed, default 12
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
OverlapCropOutput: Dictionary containing:
|
81 |
+
- crops: A numpy array containing the global crop of the full image (index 0)
|
82 |
+
followed by the overlapping cropped regions (indices 1+)
|
83 |
+
- tiling: Tuple of (height,width) tile counts
|
84 |
+
"""
|
85 |
+
original_h, original_w = image.shape[:2]
|
86 |
+
|
87 |
+
# Convert margin from patch units to pixels
|
88 |
+
margin_pixels = patch_size * overlap_margin
|
89 |
+
total_margin_pixels = margin_pixels * 2 # Both sides
|
90 |
+
|
91 |
+
# Calculate crop parameters
|
92 |
+
crop_patches = base_size[0] // patch_size # patches per crop dimension
|
93 |
+
crop_window_patches = crop_patches - (2 * overlap_margin) # usable patches
|
94 |
+
crop_window_size = crop_window_patches * patch_size # usable size in pixels
|
95 |
+
|
96 |
+
# Determine tiling
|
97 |
+
tiling = select_tiling(
|
98 |
+
original_h - total_margin_pixels,
|
99 |
+
original_w - total_margin_pixels,
|
100 |
+
crop_window_size,
|
101 |
+
max_crops,
|
102 |
+
)
|
103 |
+
|
104 |
+
# Pre-allocate crops.
|
105 |
+
n_crops = tiling[0] * tiling[1] + 1 # 1 = global crop
|
106 |
+
crops = np.zeros(
|
107 |
+
(n_crops, base_size[0], base_size[1], image.shape[2]), dtype=np.uint8
|
108 |
+
)
|
109 |
+
|
110 |
+
# Resize image to fit tiling
|
111 |
+
target_size = (
|
112 |
+
tiling[0] * crop_window_size + total_margin_pixels,
|
113 |
+
tiling[1] * crop_window_size + total_margin_pixels,
|
114 |
+
)
|
115 |
+
|
116 |
+
# Convert to vips for resizing
|
117 |
+
vips_image = pyvips.Image.new_from_array(image)
|
118 |
+
scale_x = target_size[1] / image.shape[1]
|
119 |
+
scale_y = target_size[0] / image.shape[0]
|
120 |
+
resized = vips_image.resize(scale_x, vscale=scale_y)
|
121 |
+
image = resized.numpy()
|
122 |
+
|
123 |
+
# Create global crop
|
124 |
+
scale_x = base_size[1] / vips_image.width
|
125 |
+
scale_y = base_size[0] / vips_image.height
|
126 |
+
global_vips = vips_image.resize(scale_x, vscale=scale_y)
|
127 |
+
crops[0] = global_vips.numpy()
|
128 |
+
|
129 |
+
for i in range(tiling[0]):
|
130 |
+
for j in range(tiling[1]):
|
131 |
+
# Calculate crop coordinates
|
132 |
+
y0 = i * crop_window_size
|
133 |
+
x0 = j * crop_window_size
|
134 |
+
|
135 |
+
# Extract crop with padding if needed
|
136 |
+
y_end = min(y0 + base_size[0], image.shape[0])
|
137 |
+
x_end = min(x0 + base_size[1], image.shape[1])
|
138 |
+
|
139 |
+
crop_region = image[y0:y_end, x0:x_end]
|
140 |
+
crops[
|
141 |
+
1 + i * tiling[1] + j, : crop_region.shape[0], : crop_region.shape[1]
|
142 |
+
] = crop_region
|
143 |
+
|
144 |
+
return {"crops": crops, "tiling": tiling}
|
145 |
+
|
146 |
+
|
147 |
+
def reconstruct_from_crops(
|
148 |
+
crops: torch.Tensor,
|
149 |
+
tiling: tuple[int, int],
|
150 |
+
overlap_margin: int,
|
151 |
+
patch_size: int = 14,
|
152 |
+
) -> torch.Tensor:
|
153 |
+
"""
|
154 |
+
Reconstruct the original image from overlapping crops into a single seamless image.
|
155 |
+
|
156 |
+
Takes a list of overlapping image crops along with their positional metadata and
|
157 |
+
reconstructs them into a single coherent image by carefully stitching together
|
158 |
+
non-overlapping regions. Handles both numpy arrays and PyTorch tensors.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
crops: List of image crops as numpy arrays or PyTorch tensors with shape
|
162 |
+
(H,W,C)
|
163 |
+
tiling: Tuple of (height,width) indicating crop grid layout
|
164 |
+
patch_size: Size in pixels of each patch, default 14
|
165 |
+
overlap_margin: Number of overlapping patches on each edge, default 4
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Reconstructed image as numpy array or PyTorch tensor matching input type,
|
169 |
+
with shape (H,W,C) where H,W are the original image dimensions
|
170 |
+
"""
|
171 |
+
tiling_h, tiling_w = tiling
|
172 |
+
crop_height, crop_width = crops[0].shape[:2]
|
173 |
+
margin_pixels = overlap_margin * patch_size
|
174 |
+
|
175 |
+
# Calculate output size (only adding margins once)
|
176 |
+
output_h = (crop_height - 2 * margin_pixels) * tiling_h + 2 * margin_pixels
|
177 |
+
output_w = (crop_width - 2 * margin_pixels) * tiling_w + 2 * margin_pixels
|
178 |
+
|
179 |
+
reconstructed = torch.zeros(
|
180 |
+
(output_h, output_w, crops[0].shape[2]),
|
181 |
+
device=crops[0].device,
|
182 |
+
dtype=crops[0].dtype,
|
183 |
+
)
|
184 |
+
|
185 |
+
for i, crop in enumerate(crops):
|
186 |
+
tile_y = i // tiling_w
|
187 |
+
tile_x = i % tiling_w
|
188 |
+
|
189 |
+
# For each tile, determine which part to keep
|
190 |
+
# Keep left margin only for first column
|
191 |
+
x_start = 0 if tile_x == 0 else margin_pixels
|
192 |
+
# Keep right margin only for last column
|
193 |
+
x_end = crop_width if tile_x == tiling_w - 1 else crop_width - margin_pixels
|
194 |
+
# Keep top margin only for first row
|
195 |
+
y_start = 0 if tile_y == 0 else margin_pixels
|
196 |
+
# Keep bottom margin only for last row
|
197 |
+
y_end = crop_height if tile_y == tiling_h - 1 else crop_height - margin_pixels
|
198 |
+
|
199 |
+
# Calculate where this piece belongs in the output
|
200 |
+
out_x = tile_x * (crop_width - 2 * margin_pixels)
|
201 |
+
out_y = tile_y * (crop_height - 2 * margin_pixels)
|
202 |
+
|
203 |
+
# Place the piece
|
204 |
+
reconstructed[
|
205 |
+
out_y + y_start : out_y + y_end, out_x + x_start : out_x + x_end
|
206 |
+
] = crop[y_start:y_end, x_start:x_end]
|
207 |
+
|
208 |
+
return reconstructed
|
layers.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Literal
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def gelu_approx(x):
|
9 |
+
return F.gelu(x, approximate="tanh")
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class LinearWeights:
|
14 |
+
weight: torch.Tensor
|
15 |
+
bias: torch.Tensor
|
16 |
+
|
17 |
+
|
18 |
+
def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
|
19 |
+
return F.linear(x, w.weight, w.bias)
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class LayerNormWeights:
|
24 |
+
weight: torch.Tensor
|
25 |
+
bias: torch.Tensor
|
26 |
+
|
27 |
+
|
28 |
+
def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
|
29 |
+
return F.layer_norm(x, w.bias.shape, w.weight, w.bias)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class MLPWeights:
|
34 |
+
fc1: LinearWeights
|
35 |
+
fc2: LinearWeights
|
36 |
+
act: Literal["gelu_approx"] = "gelu_approx"
|
37 |
+
|
38 |
+
|
39 |
+
def mlp(x: torch.Tensor, w: MLPWeights) -> torch.Tensor:
|
40 |
+
x = linear(x, w.fc1)
|
41 |
+
x = gelu_approx(x)
|
42 |
+
x = linear(x, w.fc2)
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class AttentionWeights:
|
48 |
+
qkv: LinearWeights
|
49 |
+
proj: LinearWeights
|
50 |
+
|
51 |
+
|
52 |
+
def attn(x: torch.Tensor, w: AttentionWeights, n_heads: int) -> torch.Tensor:
|
53 |
+
bsz, q_len, d_model = x.shape
|
54 |
+
head_dim = d_model // n_heads
|
55 |
+
|
56 |
+
q, k, v = [
|
57 |
+
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
58 |
+
for t in linear(x, w.qkv).chunk(3, dim=-1)
|
59 |
+
]
|
60 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
61 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
62 |
+
out = linear(out, w.proj)
|
63 |
+
return out
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23e2e6498a058d12832e119dc97a1d2f14936b4ccf77b8492bc0fefba49ea8bb
|
3 |
+
size 3854538376
|
moondream.py
CHANGED
@@ -1,230 +1,586 @@
|
|
1 |
import torch
|
|
|
|
|
2 |
|
3 |
-
from typing import
|
4 |
-
from transformers import PreTrainedModel
|
5 |
from PIL import Image
|
|
|
|
|
6 |
|
7 |
-
from .
|
8 |
-
from .
|
9 |
-
from .
|
10 |
-
from .
|
11 |
-
from .
|
|
|
12 |
|
13 |
-
class Moondream(PreTrainedModel):
|
14 |
-
config_class = MoondreamConfig
|
15 |
-
_supports_flash_attn_2 = True
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
-
self.
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
@property
|
33 |
def device(self):
|
34 |
-
return self.
|
35 |
|
36 |
-
def
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
def
|
41 |
-
|
42 |
-
|
43 |
-
txt, return_tensors="pt", add_special_tokens=False
|
44 |
-
).input_ids.to(self.device)
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
embeds.append(text_emb(_tokenize(before)))
|
61 |
-
embeds.append(image_embeds.to(self.device))
|
62 |
-
if len(after) > 0:
|
63 |
-
embeds.append(text_emb(_tokenize(after)))
|
64 |
|
65 |
-
return
|
|
|
|
|
66 |
|
67 |
-
def
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
86 |
with torch.no_grad():
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
inputs_embeds=inputs_embeds,
|
91 |
-
attention_mask=attention_mask,
|
92 |
-
**generate_config,
|
93 |
)
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
self,
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
):
|
105 |
-
|
106 |
-
|
107 |
-
templated_prompts = [
|
108 |
-
f"<image>\n\n{'Short caption' if length == 'short' else 'Caption'}:" for _ in images
|
109 |
-
]
|
110 |
-
inputs_embeds = torch.stack([
|
111 |
-
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
|
112 |
-
for prompt, image_embed in zip(templated_prompts, image_embeds)
|
113 |
-
])
|
114 |
-
attention_mask = torch.ones((inputs_embeds.shape[0], inputs_embeds.shape[1]), device=self.device)
|
115 |
-
|
116 |
-
generate_config = {
|
117 |
-
"eos_token_id": tokenizer.eos_token_id,
|
118 |
-
"bos_token_id": tokenizer.bos_token_id,
|
119 |
-
"pad_token_id": tokenizer.bos_token_id,
|
120 |
-
"repetition_penalty": 1.2,
|
121 |
-
"max_new_tokens": 512,
|
122 |
-
**kwargs,
|
123 |
-
}
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
]
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
self,
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
result_queue=None,
|
144 |
-
max_new_tokens=256,
|
145 |
-
**kwargs,
|
146 |
):
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
if
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
else:
|
161 |
-
return
|
162 |
|
163 |
-
def
|
164 |
self,
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
169 |
):
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
[
|
185 |
-
|
186 |
-
|
|
|
187 |
],
|
188 |
-
|
189 |
)
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
[
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
1,
|
196 |
-
max_len - p.shape[0],
|
197 |
-
device=self.device,
|
198 |
-
dtype=torch.long,
|
199 |
-
),
|
200 |
-
torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
|
201 |
-
],
|
202 |
-
dim=1,
|
203 |
-
)
|
204 |
-
for p in prompt_embs
|
205 |
],
|
206 |
-
|
207 |
)
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
**kwargs,
|
215 |
-
}
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
with torch.no_grad():
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
pass
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import random
|
4 |
|
5 |
+
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional
|
|
|
6 |
from PIL import Image
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from tokenizers import Tokenizer
|
9 |
|
10 |
+
from .config import MoondreamConfig
|
11 |
+
from .image_crops import reconstruct_from_crops
|
12 |
+
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model
|
13 |
+
from .text import build_text_model, prefill, text_encoder, lm_head, decode_one_token
|
14 |
+
from .region import decode_coordinate, encode_coordinate, decode_size, encode_size
|
15 |
+
from .utils import remove_outlier_points
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
+
SamplingSettings = TypedDict(
|
19 |
+
"SamplingSettings",
|
20 |
+
{"max_tokens": int},
|
21 |
+
total=False,
|
22 |
+
)
|
23 |
+
|
24 |
+
DEFAULT_MAX_TOKENS = 512
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass(frozen=True)
|
28 |
+
class EncodedImage:
|
29 |
+
pos: int
|
30 |
+
kv_cache: torch.Tensor
|
31 |
+
|
32 |
+
|
33 |
+
def _min_p_sampler(
|
34 |
+
logits: torch.Tensor,
|
35 |
+
min_p: float = 0.1,
|
36 |
+
filter_value: float = 0,
|
37 |
+
min_tokens_to_keep: int = 1,
|
38 |
+
temp=0.5,
|
39 |
+
) -> torch.Tensor:
|
40 |
+
"""
|
41 |
+
Min-p sampler adapted from https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
|
42 |
+
https://arxiv.org/pdf/2407.01082
|
43 |
+
"""
|
44 |
+
logits = logits / temp
|
45 |
+
probs = torch.softmax(logits, dim=-1)
|
46 |
+
top_probs, _ = probs.max(dim=-1, keepdim=True)
|
47 |
+
scaled_min_p = min_p * top_probs
|
48 |
+
tokens_to_remove = probs < scaled_min_p
|
49 |
+
sorted_indices = torch.argsort(logits, descending=True, dim=-1)
|
50 |
+
sorted_indices_to_remove = torch.gather(
|
51 |
+
tokens_to_remove, dim=-1, index=sorted_indices
|
52 |
+
)
|
53 |
+
if min_tokens_to_keep > 1:
|
54 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = False
|
55 |
+
|
56 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
57 |
+
1, sorted_indices, sorted_indices_to_remove
|
58 |
+
)
|
59 |
+
logits = logits.masked_fill(indices_to_remove, filter_value)
|
60 |
+
token = torch.multinomial(logits, num_samples=1)
|
61 |
+
return token.squeeze(0)
|
62 |
+
|
63 |
+
|
64 |
+
class MoondreamModel(nn.Module):
|
65 |
+
def __init__(self, config: MoondreamConfig, dtype=torch.float16):
|
66 |
+
super().__init__()
|
67 |
+
self.config = config
|
68 |
+
|
69 |
+
self.tokenizer = Tokenizer.from_pretrained(
|
70 |
+
"vikhyatk/moondream2", revision="2024-08-26"
|
71 |
)
|
72 |
+
self.vision = build_vision_model(config.vision, dtype)
|
73 |
+
self.text = build_text_model(config.text, dtype)
|
74 |
|
75 |
+
# Region Model
|
76 |
+
self.region = nn.ModuleDict(
|
77 |
+
{
|
78 |
+
"coord_encoder": nn.Linear(
|
79 |
+
config.region.coord_feat_dim, config.region.dim, dtype=dtype
|
80 |
+
),
|
81 |
+
"coord_decoder": nn.ModuleDict(
|
82 |
+
{
|
83 |
+
"fc1": nn.Linear(
|
84 |
+
config.region.dim, config.region.inner_dim, dtype=dtype
|
85 |
+
),
|
86 |
+
"fc2": nn.Linear(
|
87 |
+
config.region.inner_dim,
|
88 |
+
config.region.coord_out_dim,
|
89 |
+
dtype=dtype,
|
90 |
+
),
|
91 |
+
}
|
92 |
+
),
|
93 |
+
"size_encoder": nn.Linear(
|
94 |
+
config.region.size_feat_dim, config.region.dim, dtype=dtype
|
95 |
+
),
|
96 |
+
"size_decoder": nn.ModuleDict(
|
97 |
+
{
|
98 |
+
"fc1": nn.Linear(
|
99 |
+
config.region.dim, config.region.inner_dim, dtype=dtype
|
100 |
+
),
|
101 |
+
"fc2": nn.Linear(
|
102 |
+
config.region.inner_dim,
|
103 |
+
config.region.size_out_dim,
|
104 |
+
dtype=dtype,
|
105 |
+
),
|
106 |
+
}
|
107 |
+
),
|
108 |
+
}
|
109 |
+
)
|
110 |
+
self.region.coord_features = nn.Parameter(
|
111 |
+
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T
|
112 |
+
)
|
113 |
+
self.region.size_features = nn.Parameter(
|
114 |
+
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T
|
115 |
+
)
|
116 |
+
|
117 |
+
self.ops = {
|
118 |
+
"vision_encoder": vision_encoder,
|
119 |
+
"vision_projection": vision_projection,
|
120 |
+
"prefill": prefill,
|
121 |
+
"decode_one_token": decode_one_token,
|
122 |
+
}
|
123 |
|
124 |
@property
|
125 |
def device(self):
|
126 |
+
return self.vision.pos_emb.device
|
127 |
|
128 |
+
def compile(self):
|
129 |
+
self.ops["vision_encoder"] = torch.compile(
|
130 |
+
self.ops["vision_encoder"], fullgraph=True
|
131 |
+
)
|
132 |
+
# Need to figure out how to mark the 'reconstructed' input shape as dynamic
|
133 |
+
# self.ops["vision_projection"] = torch.compile(
|
134 |
+
# self.ops["vision_projection"], fullgraph=True
|
135 |
+
# )
|
136 |
+
self.ops["prefill"] = torch.compile(self.ops["prefill"], fullgraph=True)
|
137 |
+
self.ops["decode_one_token"] = torch.compile(
|
138 |
+
self.ops["decode_one_token"], fullgraph=True
|
139 |
+
)
|
140 |
|
141 |
+
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor:
|
142 |
+
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device)
|
143 |
+
torch._dynamo.mark_dynamic(all_crops, 0)
|
|
|
|
|
144 |
|
145 |
+
outputs = self.ops["vision_encoder"](all_crops, self.vision, self.config.vision)
|
146 |
|
147 |
+
global_features = outputs[0]
|
148 |
+
local_features = outputs[1:].view(
|
149 |
+
-1,
|
150 |
+
self.config.vision.enc_n_layers,
|
151 |
+
self.config.vision.enc_n_layers,
|
152 |
+
self.config.vision.enc_dim,
|
153 |
)
|
154 |
|
155 |
+
reconstructed = reconstruct_from_crops(
|
156 |
+
local_features,
|
157 |
+
tiling,
|
158 |
+
patch_size=1,
|
159 |
+
overlap_margin=self.config.vision.overlap_margin,
|
160 |
+
)
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
return self.ops["vision_projection"](
|
163 |
+
global_features, reconstructed, self.vision, self.config.vision
|
164 |
+
)
|
165 |
|
166 |
+
def encode_image(self, image: Union[Image.Image, EncodedImage]) -> EncodedImage:
|
167 |
+
if isinstance(image, EncodedImage):
|
168 |
+
return image
|
169 |
+
elif not isinstance(image, Image.Image):
|
170 |
+
raise ValueError("image must be a PIL Image or EncodedImage")
|
171 |
|
172 |
+
# Run through text model in addition to the vision encoder, to minimize
|
173 |
+
# re-computation if multiple queries are performed on this image.
|
174 |
+
kv_cache = torch.zeros(
|
175 |
+
self.config.text.n_layers,
|
176 |
+
2, # k, v
|
177 |
+
1, # batch size
|
178 |
+
self.config.text.n_heads,
|
179 |
+
self.config.text.max_context, # static cache
|
180 |
+
self.config.text.dim // self.config.text.n_heads, # head dim
|
181 |
+
device=self.device,
|
182 |
+
dtype=torch.float16,
|
183 |
+
)
|
184 |
+
with torch.no_grad():
|
185 |
+
img_emb = self._run_vision_encoder(image)
|
186 |
+
bos_emb = text_encoder(
|
187 |
+
torch.tensor([[self.config.tokenizer.bos_id]], device=self.device),
|
188 |
+
self.text,
|
189 |
+
)
|
190 |
+
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1)
|
191 |
+
self.ops["prefill"](inputs_embeds, kv_cache, 0, self.text, self.config.text)
|
192 |
+
return EncodedImage(pos=inputs_embeds.size(1), kv_cache=kv_cache)
|
193 |
|
194 |
+
def _prefill_prompt(
|
195 |
+
self, kv_cache: torch.Tensor, prompt_tokens: torch.Tensor, pos: int
|
196 |
+
):
|
197 |
with torch.no_grad():
|
198 |
+
prompt_emb = text_encoder(prompt_tokens, self.text)
|
199 |
+
hidden = self.ops["prefill"](
|
200 |
+
prompt_emb, kv_cache, pos, self.text, self.config.text
|
|
|
|
|
|
|
201 |
)
|
202 |
+
logits = lm_head(hidden, self.text)
|
203 |
+
next_token = torch.argmax(logits, dim=-1)
|
204 |
+
pos = pos + prompt_emb.size(1)
|
205 |
+
return logits, hidden, next_token, pos
|
206 |
|
207 |
+
def _generate_text(
|
208 |
+
self,
|
209 |
+
prompt_tokens: torch.Tensor,
|
210 |
+
kv_cache: torch.Tensor,
|
211 |
+
pos: int,
|
212 |
+
max_tokens: int,
|
213 |
+
):
|
214 |
+
kv_cache = kv_cache.clone()
|
215 |
+
_, _, next_token, pos = self._prefill_prompt(kv_cache, prompt_tokens, pos)
|
216 |
|
217 |
+
def generator(next_token, pos):
|
218 |
+
generated_tokens = 0
|
219 |
+
|
220 |
+
while (
|
221 |
+
next_token_id := next_token.item()
|
222 |
+
) != self.config.tokenizer.eos_id and generated_tokens < max_tokens:
|
223 |
+
yield self.tokenizer.decode([next_token_id])
|
224 |
+
|
225 |
+
with torch.no_grad():
|
226 |
+
next_emb = text_encoder(next_token, self.text)
|
227 |
+
logits, _, kv_cache_update = self.ops["decode_one_token"](
|
228 |
+
next_emb, kv_cache, pos, self.text, self.config.text
|
229 |
+
)
|
230 |
+
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
|
231 |
+
kv_cache_update
|
232 |
+
)
|
233 |
+
pos += 1
|
234 |
+
next_token = torch.argmax(logits, dim=-1)
|
235 |
+
generated_tokens += 1
|
236 |
+
|
237 |
+
return generator(next_token, pos)
|
238 |
+
|
239 |
+
def query(
|
240 |
self,
|
241 |
+
image: Union[Image.Image, EncodedImage],
|
242 |
+
question: str,
|
243 |
+
stream: bool = False,
|
244 |
+
settings: Optional[SamplingSettings] = None,
|
245 |
):
|
246 |
+
if self.config.tokenizer.templates["query"] is None:
|
247 |
+
raise NotImplementedError("Model does not support querying.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
+
image = self.encode_image(image)
|
250 |
+
prompt_tokens = torch.tensor(
|
251 |
+
[
|
252 |
+
self.config.tokenizer.templates["query"]["prefix"]
|
253 |
+
+ self.tokenizer.encode(question).ids
|
254 |
+
+ self.config.tokenizer.templates["query"]["suffix"]
|
255 |
+
],
|
256 |
+
device=self.device,
|
257 |
+
)
|
258 |
|
259 |
+
max_tokens = DEFAULT_MAX_TOKENS
|
260 |
+
if settings:
|
261 |
+
max_tokens = settings.get("max_tokens", DEFAULT_MAX_TOKENS)
|
|
|
262 |
|
263 |
+
def generator():
|
264 |
+
for token in self._generate_text(
|
265 |
+
prompt_tokens, image.kv_cache, image.pos, max_tokens
|
266 |
+
):
|
267 |
+
yield token
|
268 |
+
|
269 |
+
if stream:
|
270 |
+
return {"answer": generator()}
|
271 |
+
else:
|
272 |
+
return {"answer": "".join(list(generator()))}
|
273 |
+
|
274 |
+
def caption(
|
275 |
self,
|
276 |
+
image: Union[Image.Image, EncodedImage],
|
277 |
+
length: Literal["normal", "short"] = "normal",
|
278 |
+
stream: bool = False,
|
279 |
+
settings: Optional[SamplingSettings] = None,
|
|
|
|
|
|
|
280 |
):
|
281 |
+
if self.config.tokenizer.templates["caption"] is None:
|
282 |
+
raise NotImplementedError("Model does not support captioning.")
|
283 |
+
if length not in self.config.tokenizer.templates["caption"]:
|
284 |
+
raise ValueError(f"Model does not support caption length '{length}'.")
|
285 |
+
|
286 |
+
image = self.encode_image(image)
|
287 |
+
prompt_tokens = torch.tensor(
|
288 |
+
[self.config.tokenizer.templates["caption"][length]], device=self.device
|
289 |
+
)
|
290 |
+
|
291 |
+
max_tokens = DEFAULT_MAX_TOKENS
|
292 |
+
if settings:
|
293 |
+
max_tokens = settings.get("max_tokens", DEFAULT_MAX_TOKENS)
|
294 |
+
|
295 |
+
def generator():
|
296 |
+
for token in self._generate_text(
|
297 |
+
prompt_tokens, image.kv_cache, image.pos, max_tokens
|
298 |
+
):
|
299 |
+
yield token
|
300 |
+
|
301 |
+
if stream:
|
302 |
+
return {"caption": generator()}
|
303 |
else:
|
304 |
+
return {"caption": "".join(list(generator()))}
|
305 |
|
306 |
+
def _generate_points(
|
307 |
self,
|
308 |
+
hidden: torch.Tensor,
|
309 |
+
kv_cache: torch.Tensor,
|
310 |
+
next_token: torch.Tensor,
|
311 |
+
pos: int,
|
312 |
+
include_size: bool = True,
|
313 |
+
max_points: int = 50,
|
314 |
):
|
315 |
+
out = []
|
316 |
|
317 |
+
with torch.no_grad():
|
318 |
+
while (
|
319 |
+
next_token.item() != self.config.tokenizer.eos_id
|
320 |
+
and len(out) < max_points
|
321 |
+
):
|
322 |
+
x_logits = decode_coordinate(hidden, self.region)
|
323 |
+
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1)
|
324 |
+
next_emb = encode_coordinate(
|
325 |
+
x_center.to(dtype=x_logits.dtype), self.region
|
326 |
+
)
|
327 |
|
328 |
+
# Decode y-coordinate
|
329 |
+
_, hidden, kv_cache_update = self.ops["decode_one_token"](
|
330 |
+
next_emb, kv_cache, pos, self.text, self.config.text
|
331 |
+
)
|
332 |
+
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
|
333 |
+
kv_cache_update
|
334 |
+
)
|
335 |
+
pos += 1
|
336 |
+
y_logits = decode_coordinate(hidden, self.region)
|
337 |
+
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1)
|
338 |
+
next_emb = encode_coordinate(
|
339 |
+
y_center.to(dtype=y_logits.dtype), self.region
|
340 |
+
)
|
341 |
+
|
342 |
+
# Decode size
|
343 |
+
if include_size:
|
344 |
+
logits, hidden, kv_cache_update = self.ops["decode_one_token"](
|
345 |
+
next_emb, kv_cache, pos, self.text, self.config.text
|
346 |
+
)
|
347 |
+
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
|
348 |
+
kv_cache_update
|
349 |
+
)
|
350 |
+
pos += 1
|
351 |
+
size_logits = decode_size(hidden, self.region)
|
352 |
+
w = torch.argmax(size_logits[0], dim=-1) / size_logits.size(-1)
|
353 |
+
h = torch.argmax(size_logits[1], dim=-1) / size_logits.size(-1)
|
354 |
+
next_emb = encode_size(
|
355 |
+
torch.tensor(
|
356 |
+
[w, h], device=self.device, dtype=size_logits.dtype
|
357 |
+
),
|
358 |
+
self.region,
|
359 |
+
)[None]
|
360 |
+
|
361 |
+
# Add object
|
362 |
+
out.append(
|
363 |
+
{
|
364 |
+
"x_min": x_center.item() - w.item() / 2,
|
365 |
+
"y_min": y_center.item() - h.item() / 2,
|
366 |
+
"x_max": x_center.item() + w.item() / 2,
|
367 |
+
"y_max": y_center.item() + h.item() / 2,
|
368 |
+
}
|
369 |
+
)
|
370 |
+
else:
|
371 |
+
out.append({"x": x_center.item(), "y": y_center.item()})
|
372 |
+
|
373 |
+
# Decode next token (x-coordinate, or eos)
|
374 |
+
logits, hidden, kv_cache_update = self.ops["decode_one_token"](
|
375 |
+
next_emb, kv_cache, pos, self.text, self.config.text
|
376 |
+
)
|
377 |
+
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
|
378 |
+
kv_cache_update
|
379 |
+
)
|
380 |
+
pos += 1
|
381 |
+
next_token = torch.argmax(logits, dim=-1)
|
382 |
|
383 |
+
return out
|
384 |
+
|
385 |
+
def detect(
|
386 |
+
self,
|
387 |
+
image: Union[Image.Image, EncodedImage],
|
388 |
+
object: str,
|
389 |
+
settings: Optional[SamplingSettings] = None,
|
390 |
+
):
|
391 |
+
if self.config.tokenizer.templates["detect"] is None:
|
392 |
+
raise NotImplementedError("Model does not support object detection.")
|
393 |
+
|
394 |
+
image = self.encode_image(image)
|
395 |
+
prompt_tokens = torch.tensor(
|
396 |
[
|
397 |
+
self.config.tokenizer.templates["detect"]["prefix"]
|
398 |
+
+ self.tokenizer.encode(object).ids
|
399 |
+
+ self.config.tokenizer.templates["detect"]["suffix"]
|
400 |
],
|
401 |
+
device=self.device,
|
402 |
)
|
403 |
+
|
404 |
+
kv_cache = image.kv_cache.clone()
|
405 |
+
_, hidden, next_token, pos = self._prefill_prompt(
|
406 |
+
kv_cache, prompt_tokens, image.pos
|
407 |
+
)
|
408 |
+
hidden = hidden[:, -1:, :]
|
409 |
+
|
410 |
+
objects = self._generate_points(
|
411 |
+
hidden, kv_cache, next_token, pos, include_size=True, max_points=50
|
412 |
+
)
|
413 |
+
|
414 |
+
return {"objects": objects}
|
415 |
+
|
416 |
+
def point(
|
417 |
+
self,
|
418 |
+
image: Union[Image.Image, EncodedImage],
|
419 |
+
object: str,
|
420 |
+
settings: Optional[SamplingSettings] = None,
|
421 |
+
):
|
422 |
+
if self.config.tokenizer.templates["point"] is None:
|
423 |
+
raise NotImplementedError("Model does not support pointing.")
|
424 |
+
|
425 |
+
image = self.encode_image(image)
|
426 |
+
prompt_tokens = torch.tensor(
|
427 |
[
|
428 |
+
self.config.tokenizer.templates["point"]["prefix"]
|
429 |
+
+ self.tokenizer.encode(object).ids
|
430 |
+
+ self.config.tokenizer.templates["point"]["suffix"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
],
|
432 |
+
device=self.device,
|
433 |
)
|
434 |
|
435 |
+
kv_cache = image.kv_cache.clone()
|
436 |
+
_, hidden, next_token, pos = self._prefill_prompt(
|
437 |
+
kv_cache, prompt_tokens, image.pos
|
438 |
+
)
|
439 |
+
hidden = hidden[:, -1:, :]
|
|
|
|
|
440 |
|
441 |
+
objects = self._generate_points(
|
442 |
+
hidden, kv_cache, next_token, pos, include_size=False, max_points=50
|
443 |
+
)
|
444 |
+
|
445 |
+
return {"points": objects}
|
446 |
+
|
447 |
+
def _detect_gaze(
|
448 |
+
self,
|
449 |
+
image: EncodedImage,
|
450 |
+
source: Tuple[float, float],
|
451 |
+
force_detect: bool = False,
|
452 |
+
):
|
453 |
with torch.no_grad():
|
454 |
+
before_emb = text_encoder(
|
455 |
+
torch.tensor(
|
456 |
+
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device
|
457 |
+
),
|
458 |
+
self.text,
|
459 |
+
)
|
460 |
+
after_emb = text_encoder(
|
461 |
+
torch.tensor(
|
462 |
+
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device
|
463 |
+
),
|
464 |
+
self.text,
|
465 |
+
)
|
466 |
+
x_emb = encode_coordinate(
|
467 |
+
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.float16),
|
468 |
+
self.region,
|
469 |
+
)
|
470 |
+
y_emb = encode_coordinate(
|
471 |
+
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.float16),
|
472 |
+
self.region,
|
473 |
+
)
|
474 |
+
|
475 |
+
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1)
|
476 |
+
|
477 |
+
kv_cache = image.kv_cache.clone()
|
478 |
+
hidden = self.ops["prefill"](
|
479 |
+
prompt_emb, kv_cache, image.pos, self.text, self.config.text
|
480 |
+
)
|
481 |
+
logits = lm_head(hidden, self.text)
|
482 |
+
next_token = torch.argmax(logits, dim=-1)
|
483 |
+
pos = image.pos + prompt_emb.size(1)
|
484 |
+
hidden = hidden[:, -1:, :]
|
485 |
+
|
486 |
+
if force_detect:
|
487 |
+
next_token = torch.tensor([[0]], device=self.device)
|
488 |
+
|
489 |
+
if next_token.item() == self.config.tokenizer.eos_id:
|
490 |
+
return None
|
491 |
+
|
492 |
+
gaze = self._generate_points(
|
493 |
+
hidden, kv_cache, next_token, pos, include_size=False, max_points=1
|
494 |
+
)
|
495 |
+
return gaze[0]
|
496 |
+
|
497 |
+
def detect_gaze(
|
498 |
+
self,
|
499 |
+
image: Union[Image.Image, EncodedImage],
|
500 |
+
eye: Optional[Tuple[float, float]] = None,
|
501 |
+
face: Optional[Dict[str, float]] = None,
|
502 |
+
unstable_settings: Dict[str, Any] = {},
|
503 |
+
):
|
504 |
+
if "force_detect" in unstable_settings:
|
505 |
+
force_detect = unstable_settings["force_detect"]
|
506 |
+
else:
|
507 |
+
force_detect = False
|
508 |
+
|
509 |
+
if "prioritize_accuracy" in unstable_settings:
|
510 |
+
prioritize_accuracy = unstable_settings["prioritize_accuracy"]
|
511 |
+
else:
|
512 |
+
prioritize_accuracy = False
|
513 |
+
|
514 |
+
if not prioritize_accuracy:
|
515 |
+
if eye is None:
|
516 |
+
raise ValueError("eye must be provided when prioritize_accuracy=False")
|
517 |
+
image = self.encode_image(image)
|
518 |
+
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)}
|
519 |
+
else:
|
520 |
+
if (
|
521 |
+
not isinstance(image, Image.Image)
|
522 |
+
and "flip_enc_img" not in unstable_settings
|
523 |
+
):
|
524 |
+
raise ValueError(
|
525 |
+
"image must be a PIL Image when prioritize_accuracy=True, "
|
526 |
+
"or flip_enc_img must be provided"
|
527 |
+
)
|
528 |
+
if face is None:
|
529 |
+
raise ValueError("face must be provided when prioritize_accuracy=True")
|
530 |
+
|
531 |
+
encoded_image = self.encode_image(image)
|
532 |
+
if (
|
533 |
+
isinstance(image, Image.Image)
|
534 |
+
and "flip_enc_img" not in unstable_settings
|
535 |
+
):
|
536 |
+
flipped_pil = image.copy()
|
537 |
+
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT)
|
538 |
+
encoded_flipped_image = self.encode_image(flipped_pil)
|
539 |
+
else:
|
540 |
+
encoded_flipped_image = unstable_settings["flip_enc_img"]
|
541 |
+
|
542 |
+
N = 10
|
543 |
+
|
544 |
+
detections = [
|
545 |
+
self._detect_gaze(
|
546 |
+
encoded_image,
|
547 |
+
(
|
548 |
+
random.uniform(face["x_min"], face["x_max"]),
|
549 |
+
random.uniform(face["y_min"], face["y_max"]),
|
550 |
+
),
|
551 |
+
force_detect=force_detect,
|
552 |
+
)
|
553 |
+
for _ in range(N)
|
554 |
+
]
|
555 |
+
detections = [
|
556 |
+
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None
|
557 |
+
]
|
558 |
+
flipped_detections = [
|
559 |
+
self._detect_gaze(
|
560 |
+
encoded_flipped_image,
|
561 |
+
(
|
562 |
+
1 - random.uniform(face["x_min"], face["x_max"]),
|
563 |
+
random.uniform(face["y_min"], face["y_max"]),
|
564 |
+
),
|
565 |
+
force_detect=force_detect,
|
566 |
+
)
|
567 |
+
for _ in range(N)
|
568 |
+
]
|
569 |
+
detections.extend(
|
570 |
+
[
|
571 |
+
(1 - gaze["x"], gaze["y"])
|
572 |
+
for gaze in flipped_detections
|
573 |
+
if gaze is not None
|
574 |
+
]
|
575 |
)
|
576 |
|
577 |
+
if len(detections) < N:
|
578 |
+
return {"gaze": None}
|
579 |
+
|
580 |
+
detections = remove_outlier_points(detections)
|
581 |
+
mean_gaze = (
|
582 |
+
sum(gaze[0] for gaze in detections) / len(detections),
|
583 |
+
sum(gaze[1] for gaze in detections) / len(detections),
|
584 |
+
)
|
585 |
|
586 |
+
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}
|
|
region.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
|
4 |
+
from .weights import RegionModel
|
5 |
+
from .layers import linear, mlp
|
6 |
+
|
7 |
+
|
8 |
+
def fourier_features(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
|
9 |
+
"""
|
10 |
+
Applies Fourier feature mapping to input tensor x using frequency matrix w. This
|
11 |
+
projects inputs through sinusoidal functions to create higher dimensional features
|
12 |
+
that help mitigate spectral bias - the tendency of neural networks to learn
|
13 |
+
low-frequency functions more easily than high-frequency ones. By explicitly
|
14 |
+
mapping inputs to higher frequencies through sin/cos transformations, we enable
|
15 |
+
better learning of fine details and higher frequency patterns.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
x: Input tensor to transform
|
19 |
+
w: Matrix of frequencies for the Fourier features transformation
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
Concatenated cosine and sine transformed features as a tensor
|
23 |
+
"""
|
24 |
+
f = 2 * math.pi * x @ w
|
25 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
26 |
+
|
27 |
+
|
28 |
+
def encode_coordinate(coord: torch.Tensor, w: RegionModel) -> torch.Tensor:
|
29 |
+
"""
|
30 |
+
Takes as input a tensor containing a single float coordinate value (x or y)
|
31 |
+
and encodes it into hidden states for input to the text model.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
coord: Tensor with single float coordinate value
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
Encoded hidden states tensor for input to text model
|
38 |
+
"""
|
39 |
+
return linear(fourier_features(coord, w.coord_features), w.coord_encoder)
|
40 |
+
|
41 |
+
|
42 |
+
def decode_coordinate(hidden_state: torch.Tensor, w: RegionModel) -> torch.Tensor:
|
43 |
+
"""
|
44 |
+
Takes as input the last hidden state from the text model and outputs a single logit
|
45 |
+
representing either an x or y coordinate prediction.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
hidden_state: The final hidden state tensor from the text model.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
A single logit representing the predicted coordinate value (x or y)
|
52 |
+
"""
|
53 |
+
return mlp(hidden_state, w.coord_decoder)
|
54 |
+
|
55 |
+
|
56 |
+
def encode_size(size: torch.Tensor, w: RegionModel) -> torch.Tensor:
|
57 |
+
"""
|
58 |
+
Takes a tensor containing normalized width and height values in range [0,1]
|
59 |
+
and encodes them into hidden states for input to the text model.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
size: Tensor with two floats for width and height in range [0,1]
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
Encoded hidden states tensor for input to text model
|
66 |
+
"""
|
67 |
+
return linear(fourier_features(size, w.size_features), w.size_encoder)
|
68 |
+
|
69 |
+
|
70 |
+
def decode_size(hidden_state: torch.Tensor, w: RegionModel) -> torch.Tensor:
|
71 |
+
"""
|
72 |
+
Takes as input the last hidden state from the text model and outputs two logits
|
73 |
+
for width and height respectively.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
hidden_state: The final hidden state tensor from the text model.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
A tensor containing two logits - one for predicted width and one for
|
80 |
+
predicted height.
|
81 |
+
"""
|
82 |
+
return mlp(hidden_state, w.size_decoder).view(2, -1)
|
rope.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ethically sourced from https://github.com/xjdr-alt/entropix
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def precompute_freqs_cis(
|
7 |
+
dim: int,
|
8 |
+
end: int,
|
9 |
+
theta: float = 10000.0,
|
10 |
+
use_scaled: bool = False,
|
11 |
+
dtype: torch.dtype = torch.float32,
|
12 |
+
) -> torch.Tensor:
|
13 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=dtype)[: (dim // 2)] / dim))
|
14 |
+
t = torch.arange(end, dtype=dtype).unsqueeze(1)
|
15 |
+
freqs = t * freqs.unsqueeze(0)
|
16 |
+
freqs = torch.exp(1j * freqs)
|
17 |
+
return torch.stack([freqs.real, freqs.imag], dim=-1)
|
18 |
+
|
19 |
+
|
20 |
+
def apply_rotary_emb(
|
21 |
+
x: torch.Tensor,
|
22 |
+
freqs_cis: torch.Tensor,
|
23 |
+
position_ids: torch.Tensor,
|
24 |
+
num_heads: int,
|
25 |
+
rot_dim: int = 32,
|
26 |
+
interleave: bool = False,
|
27 |
+
) -> torch.Tensor:
|
28 |
+
assert rot_dim == freqs_cis.shape[-2] * 2
|
29 |
+
assert num_heads == x.shape[1]
|
30 |
+
|
31 |
+
x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
32 |
+
|
33 |
+
if interleave:
|
34 |
+
xq_r = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 0]
|
35 |
+
xq_i = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 1]
|
36 |
+
else:
|
37 |
+
d_q = x_rot.shape[-1] // 2
|
38 |
+
xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:]
|
39 |
+
|
40 |
+
freqs_cos = freqs_cis[..., 0][position_ids, :].unsqueeze(0).unsqueeze(0)
|
41 |
+
freqs_sin = freqs_cis[..., 1][position_ids, :].unsqueeze(0).unsqueeze(0)
|
42 |
+
|
43 |
+
# Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
44 |
+
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
45 |
+
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
46 |
+
xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2)
|
47 |
+
|
48 |
+
return torch.cat([xq_out.to(x.dtype), x_pass], dim=-1)
|
text.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from .layers import layer_norm, linear, mlp
|
6 |
+
from .rope import apply_rotary_emb, precompute_freqs_cis
|
7 |
+
from .weights import AttentionWeights
|
8 |
+
from .config import TextConfig
|
9 |
+
|
10 |
+
|
11 |
+
def text_encoder(input_ids: torch.Tensor, w: nn.Module):
|
12 |
+
return F.embedding(input_ids, w.wte)
|
13 |
+
|
14 |
+
|
15 |
+
def attn(
|
16 |
+
x: torch.Tensor,
|
17 |
+
w: AttentionWeights,
|
18 |
+
freqs_cis: torch.Tensor,
|
19 |
+
layer_kv_cache: torch.Tensor,
|
20 |
+
attn_mask: torch.Tensor,
|
21 |
+
n_heads: int,
|
22 |
+
pos: int,
|
23 |
+
):
|
24 |
+
bsz, q_len, d_model = x.shape
|
25 |
+
head_dim = d_model // n_heads
|
26 |
+
|
27 |
+
q, k, v = [
|
28 |
+
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
29 |
+
for t in linear(x, w.qkv).chunk(3, dim=-1)
|
30 |
+
]
|
31 |
+
|
32 |
+
position_ids = torch.arange(pos, pos + q_len, dtype=torch.long)
|
33 |
+
q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads)
|
34 |
+
k = apply_rotary_emb(k, freqs_cis, position_ids, n_heads)
|
35 |
+
|
36 |
+
k_, v_ = k, v
|
37 |
+
if layer_kv_cache is not None:
|
38 |
+
k = torch.cat([layer_kv_cache[0, :, :, :pos, :], k], dim=2)
|
39 |
+
v = torch.cat([layer_kv_cache[1, :, :, :pos, :], v], dim=2)
|
40 |
+
|
41 |
+
out = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask).to(
|
42 |
+
# This type conversion isn't needed when running in PyTorch directly, but the
|
43 |
+
# ONNX export runs attention in float32 because the attention mask is cast to
|
44 |
+
# float32.
|
45 |
+
x.dtype
|
46 |
+
)
|
47 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
48 |
+
out = linear(out, w.proj)
|
49 |
+
return out, torch.stack([k_, v_])
|
50 |
+
|
51 |
+
|
52 |
+
def text_decoder(
|
53 |
+
inputs_embeds: torch.Tensor,
|
54 |
+
w: nn.Module,
|
55 |
+
kv_cache: torch.Tensor,
|
56 |
+
pos: int,
|
57 |
+
config: TextConfig,
|
58 |
+
):
|
59 |
+
hidden_BTC = inputs_embeds
|
60 |
+
new_kv_cache = [torch.empty(0)] * len(w.blocks)
|
61 |
+
|
62 |
+
attn_mask = w.attn_mask[
|
63 |
+
:, :, pos : pos + hidden_BTC.size(1), : pos + hidden_BTC.size(1)
|
64 |
+
]
|
65 |
+
|
66 |
+
for i, block in enumerate(w.blocks):
|
67 |
+
l_in = layer_norm(hidden_BTC, block.ln)
|
68 |
+
l_attn, new_kv_cache[i] = attn(
|
69 |
+
l_in,
|
70 |
+
block.attn,
|
71 |
+
freqs_cis=w.freqs_cis,
|
72 |
+
layer_kv_cache=kv_cache[i],
|
73 |
+
attn_mask=attn_mask,
|
74 |
+
n_heads=config.n_heads,
|
75 |
+
pos=pos,
|
76 |
+
)
|
77 |
+
l_mlp = mlp(l_in, block.mlp)
|
78 |
+
hidden_BTC = hidden_BTC + l_attn + l_mlp
|
79 |
+
|
80 |
+
return hidden_BTC, torch.stack(new_kv_cache)
|
81 |
+
|
82 |
+
|
83 |
+
def lm_head(hidden_BTC: torch.Tensor, w: nn.Module):
|
84 |
+
hidden_BC = hidden_BTC[:, -1, :]
|
85 |
+
hidden_BC = layer_norm(hidden_BC, w.post_ln)
|
86 |
+
logits = linear(hidden_BC, w.lm_head)
|
87 |
+
return logits
|
88 |
+
|
89 |
+
|
90 |
+
def prefill(
|
91 |
+
inputs_embeds: torch.Tensor,
|
92 |
+
kv_cache: torch.Tensor,
|
93 |
+
pos: int,
|
94 |
+
w: nn.Module,
|
95 |
+
config: TextConfig,
|
96 |
+
):
|
97 |
+
# Updates kv_cache in-place
|
98 |
+
hidden, kv_cache[:, :, :, :, pos : pos + inputs_embeds.size(1), :] = text_decoder(
|
99 |
+
inputs_embeds, w, kv_cache, pos, config
|
100 |
+
)
|
101 |
+
return hidden
|
102 |
+
|
103 |
+
|
104 |
+
def decode_one_token(
|
105 |
+
token_emb: torch.Tensor,
|
106 |
+
kv_cache: torch.Tensor,
|
107 |
+
pos: int,
|
108 |
+
w: nn.Module,
|
109 |
+
config: TextConfig,
|
110 |
+
):
|
111 |
+
hidden, kv_cache_update = text_decoder(token_emb[None], w, kv_cache, pos, config)
|
112 |
+
logits = lm_head(hidden, w)
|
113 |
+
return logits, hidden, kv_cache_update
|
114 |
+
|
115 |
+
|
116 |
+
def build_text_model(config: TextConfig, dtype: torch.dtype) -> nn.Module:
|
117 |
+
text = nn.ModuleDict(
|
118 |
+
{
|
119 |
+
"blocks": nn.ModuleList(
|
120 |
+
[
|
121 |
+
nn.ModuleDict(
|
122 |
+
{
|
123 |
+
"ln": nn.LayerNorm(config.dim, dtype=dtype),
|
124 |
+
"attn": nn.ModuleDict(
|
125 |
+
{
|
126 |
+
"qkv": nn.Linear(
|
127 |
+
config.dim, 3 * config.dim, dtype=dtype
|
128 |
+
),
|
129 |
+
"proj": nn.Linear(
|
130 |
+
config.dim, config.dim, dtype=dtype
|
131 |
+
),
|
132 |
+
}
|
133 |
+
),
|
134 |
+
"mlp": nn.ModuleDict(
|
135 |
+
{
|
136 |
+
"fc1": nn.Linear(
|
137 |
+
config.dim, 4 * config.dim, dtype=dtype
|
138 |
+
),
|
139 |
+
"fc2": nn.Linear(
|
140 |
+
4 * config.dim, config.dim, dtype=dtype
|
141 |
+
),
|
142 |
+
}
|
143 |
+
),
|
144 |
+
}
|
145 |
+
)
|
146 |
+
for _ in range(config.n_layers)
|
147 |
+
]
|
148 |
+
),
|
149 |
+
"post_ln": nn.LayerNorm(config.dim, dtype=dtype),
|
150 |
+
"lm_head": nn.Linear(config.dim, config.vocab_size, dtype=dtype),
|
151 |
+
}
|
152 |
+
)
|
153 |
+
text.wte = nn.Parameter(torch.empty(config.vocab_size, config.dim, dtype=dtype))
|
154 |
+
text.register_buffer(
|
155 |
+
"freqs_cis",
|
156 |
+
precompute_freqs_cis(config.dim // (2 * config.n_heads), config.max_context),
|
157 |
+
persistent=False,
|
158 |
+
)
|
159 |
+
|
160 |
+
attn_mask = torch.tril(
|
161 |
+
torch.ones(1, 1, config.max_context, config.max_context, dtype=torch.bool)
|
162 |
+
)
|
163 |
+
if config.prefix_attn != 0:
|
164 |
+
attn_mask[..., : config.prefix_attn, : config.prefix_attn] = 1
|
165 |
+
text.register_buffer("attn_mask", attn_mask, persistent=False)
|
166 |
+
|
167 |
+
return text
|
utils.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def remove_outlier_points(points_tuples, k_nearest=2, threshold=2.0):
|
5 |
+
"""
|
6 |
+
Robust outlier detection for list of (x,y) tuples.
|
7 |
+
Only requires numpy.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
points_tuples: list of (x,y) tuples
|
11 |
+
k_nearest: number of neighbors to consider
|
12 |
+
threshold: multiplier for median distance
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
list: filtered list of (x,y) tuples with outliers removed
|
16 |
+
list: list of booleans indicating which points were kept (True = kept)
|
17 |
+
"""
|
18 |
+
points = np.array(points_tuples)
|
19 |
+
n_points = len(points)
|
20 |
+
|
21 |
+
# Calculate pairwise distances manually
|
22 |
+
dist_matrix = np.zeros((n_points, n_points))
|
23 |
+
for i in range(n_points):
|
24 |
+
for j in range(i + 1, n_points):
|
25 |
+
# Euclidean distance between points i and j
|
26 |
+
dist = np.sqrt(np.sum((points[i] - points[j]) ** 2))
|
27 |
+
dist_matrix[i, j] = dist
|
28 |
+
dist_matrix[j, i] = dist
|
29 |
+
|
30 |
+
# Get k nearest neighbors' distances
|
31 |
+
k = min(k_nearest, n_points - 1)
|
32 |
+
neighbor_distances = np.partition(dist_matrix, k, axis=1)[:, :k]
|
33 |
+
avg_neighbor_dist = np.mean(neighbor_distances, axis=1)
|
34 |
+
|
35 |
+
# Calculate mask using median distance
|
36 |
+
median_dist = np.median(avg_neighbor_dist)
|
37 |
+
mask = avg_neighbor_dist <= threshold * median_dist
|
38 |
+
|
39 |
+
# Return filtered tuples and mask
|
40 |
+
filtered_tuples = [t for t, m in zip(points_tuples, mask) if m]
|
41 |
+
return filtered_tuples
|
vision.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from typing import Union, Tuple
|
7 |
+
from einops import rearrange
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from .layers import attn, layer_norm, linear, mlp
|
11 |
+
from .image_crops import overlap_crop_image
|
12 |
+
from .config import VisionConfig
|
13 |
+
|
14 |
+
if torch.backends.mps.is_available():
|
15 |
+
# Non-divisible input sizes are not implemented on MPS device yet.
|
16 |
+
# https://github.com/pytorch/pytorch/issues/96056
|
17 |
+
def adaptive_avg_pool2d(input, output_size):
|
18 |
+
return F.adaptive_avg_pool2d(input.to("cpu"), output_size).to("mps")
|
19 |
+
|
20 |
+
else:
|
21 |
+
adaptive_avg_pool2d = F.adaptive_avg_pool2d
|
22 |
+
|
23 |
+
DeviceLike = Union[str, torch.device, int]
|
24 |
+
|
25 |
+
|
26 |
+
def prepare_crops(
|
27 |
+
image: Image.Image, config: VisionConfig, device: DeviceLike
|
28 |
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
29 |
+
np_image = np.array(image.convert("RGB"))
|
30 |
+
overlap_crops = overlap_crop_image(
|
31 |
+
np_image, max_crops=config.max_crops, overlap_margin=config.overlap_margin
|
32 |
+
)
|
33 |
+
all_crops = overlap_crops["crops"]
|
34 |
+
all_crops = np.transpose(all_crops, (0, 3, 1, 2))
|
35 |
+
all_crops = (
|
36 |
+
torch.from_numpy(all_crops)
|
37 |
+
.to(device=device, dtype=torch.float16)
|
38 |
+
.div_(255.0)
|
39 |
+
.sub_(0.5)
|
40 |
+
.div_(0.5)
|
41 |
+
)
|
42 |
+
return all_crops, overlap_crops["tiling"]
|
43 |
+
|
44 |
+
|
45 |
+
def vision_encoder(input_BCHW: torch.Tensor, w: nn.Module, config: VisionConfig):
|
46 |
+
x = rearrange(
|
47 |
+
input_BCHW,
|
48 |
+
"b c (h p1) (w p2) -> b (h w) (c p1 p2)",
|
49 |
+
p1=config.enc_patch_size,
|
50 |
+
p2=config.enc_patch_size,
|
51 |
+
) # B3HW -> B(HxW)(3xP1xP2), aka BTC
|
52 |
+
|
53 |
+
x = linear(x, w.patch_emb)
|
54 |
+
x = x + w.pos_emb
|
55 |
+
for block in w.blocks:
|
56 |
+
x = x + attn(layer_norm(x, block.ln1), block.attn, n_heads=config.enc_n_heads)
|
57 |
+
x = x + mlp(layer_norm(x, block.ln2), block.mlp)
|
58 |
+
x = layer_norm(x, w.post_ln)
|
59 |
+
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
def vision_projection(
|
64 |
+
global_features: torch.Tensor,
|
65 |
+
reconstructed: torch.Tensor,
|
66 |
+
w: nn.Module,
|
67 |
+
config: VisionConfig,
|
68 |
+
):
|
69 |
+
reconstructed = reconstructed.permute(2, 0, 1)
|
70 |
+
reconstructed = adaptive_avg_pool2d(
|
71 |
+
reconstructed, output_size=(config.enc_n_layers, config.enc_n_layers)
|
72 |
+
)
|
73 |
+
reconstructed = reconstructed.permute(1, 2, 0).view(729, config.enc_dim)
|
74 |
+
final_features = torch.cat([global_features, reconstructed], dim=-1)
|
75 |
+
return mlp(final_features, w.proj_mlp)
|
76 |
+
|
77 |
+
|
78 |
+
def build_vision_model(config: VisionConfig, dtype: torch.dtype):
|
79 |
+
patch_dim = config.enc_patch_size * config.enc_patch_size * config.in_channels
|
80 |
+
grid_size = config.crop_size // config.enc_patch_size
|
81 |
+
num_patches = grid_size * grid_size
|
82 |
+
|
83 |
+
vision = nn.ModuleDict(
|
84 |
+
{
|
85 |
+
"patch_emb": nn.Linear(patch_dim, config.enc_dim, dtype=dtype),
|
86 |
+
"blocks": nn.ModuleList(
|
87 |
+
[
|
88 |
+
nn.ModuleDict(
|
89 |
+
{
|
90 |
+
"ln1": nn.LayerNorm(config.enc_dim, dtype=dtype),
|
91 |
+
"attn": nn.ModuleDict(
|
92 |
+
{
|
93 |
+
"qkv": nn.Linear(
|
94 |
+
config.enc_dim, 3 * config.enc_dim, dtype=dtype
|
95 |
+
),
|
96 |
+
"proj": nn.Linear(
|
97 |
+
config.enc_dim, config.enc_dim, dtype=dtype
|
98 |
+
),
|
99 |
+
}
|
100 |
+
),
|
101 |
+
"ln2": nn.LayerNorm(config.enc_dim, dtype=dtype),
|
102 |
+
"mlp": nn.ModuleDict(
|
103 |
+
{
|
104 |
+
"fc1": nn.Linear(
|
105 |
+
config.enc_dim, config.enc_ff_dim, dtype=dtype
|
106 |
+
),
|
107 |
+
"fc2": nn.Linear(
|
108 |
+
config.enc_ff_dim, config.enc_dim, dtype=dtype
|
109 |
+
),
|
110 |
+
}
|
111 |
+
),
|
112 |
+
}
|
113 |
+
)
|
114 |
+
for _ in range(config.enc_n_layers)
|
115 |
+
]
|
116 |
+
),
|
117 |
+
"post_ln": nn.LayerNorm(config.enc_dim, dtype=dtype),
|
118 |
+
"proj_mlp": nn.ModuleDict(
|
119 |
+
{
|
120 |
+
"fc1": nn.Linear(
|
121 |
+
config.enc_dim * 2, config.proj_inner_dim, dtype=dtype
|
122 |
+
),
|
123 |
+
"fc2": nn.Linear(
|
124 |
+
config.proj_inner_dim, config.proj_out_dim, dtype=dtype
|
125 |
+
),
|
126 |
+
}
|
127 |
+
),
|
128 |
+
}
|
129 |
+
)
|
130 |
+
vision.pos_emb = nn.Parameter(
|
131 |
+
torch.zeros(1, num_patches, config.enc_dim, dtype=dtype)
|
132 |
+
)
|
133 |
+
return vision
|
weights.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import safetensors
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from contextlib import contextmanager
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Callable, List
|
8 |
+
|
9 |
+
from .layers import AttentionWeights, LayerNormWeights, LinearWeights, MLPWeights
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class VisionBlock:
|
14 |
+
ln1: LayerNormWeights
|
15 |
+
attn: AttentionWeights
|
16 |
+
ln2: LayerNormWeights
|
17 |
+
mlp: MLPWeights
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class VisionModel:
|
22 |
+
patch_emb: LinearWeights
|
23 |
+
pos_emb: torch.Tensor
|
24 |
+
blocks: List[VisionBlock]
|
25 |
+
post_ln: LayerNormWeights
|
26 |
+
proj_mlp: MLPWeights
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class TextBlock:
|
31 |
+
ln: LayerNormWeights
|
32 |
+
attn: AttentionWeights
|
33 |
+
mlp: MLPWeights
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class TextModel:
|
38 |
+
wte: torch.Tensor
|
39 |
+
blocks: List[TextBlock]
|
40 |
+
post_ln: LayerNormWeights
|
41 |
+
lm_head: LinearWeights
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class RegionModel:
|
46 |
+
coord_features: torch.Tensor
|
47 |
+
coord_encoder: LinearWeights
|
48 |
+
coord_decoder: MLPWeights
|
49 |
+
size_features: torch.Tensor
|
50 |
+
size_encoder: LinearWeights
|
51 |
+
size_decoder: MLPWeights
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class MoondreamModel:
|
56 |
+
vision: VisionModel
|
57 |
+
text: TextModel
|
58 |
+
region: RegionModel
|
59 |
+
|
60 |
+
|
61 |
+
@contextmanager
|
62 |
+
def safetensors_open(safetensors_file: str):
|
63 |
+
"""
|
64 |
+
Simplify interfacing with safetensors files. Eliminates the need to ignore
|
65 |
+
type errors when using the `safe_open` function.
|
66 |
+
"""
|
67 |
+
with safetensors.safe_open(
|
68 |
+
safetensors_file, framework="pt"
|
69 |
+
) as st: # pyright: ignore
|
70 |
+
|
71 |
+
def get_tensor(name: str) -> torch.Tensor:
|
72 |
+
return st.get_tensor(name)
|
73 |
+
|
74 |
+
def get_keys() -> List[str]:
|
75 |
+
return st.keys()
|
76 |
+
|
77 |
+
get_tensor.keys = get_keys
|
78 |
+
|
79 |
+
yield get_tensor
|
80 |
+
|
81 |
+
|
82 |
+
def _load_weights(get_tensor: Callable[[str], torch.Tensor], model: nn.Module) -> None:
|
83 |
+
"""Internal function to load weights using a tensor getter function."""
|
84 |
+
model = model.to(dtype=torch.float16)
|
85 |
+
|
86 |
+
# Vision Model
|
87 |
+
model.vision["patch_emb"].weight.data.copy_(
|
88 |
+
get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.weight")
|
89 |
+
)
|
90 |
+
model.vision["patch_emb"].bias.data.copy_(
|
91 |
+
get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.bias")
|
92 |
+
)
|
93 |
+
model.vision.pos_emb.data.copy_(
|
94 |
+
get_tensor("vision_encoder.encoder.model.visual.pos_embed")
|
95 |
+
)
|
96 |
+
|
97 |
+
for i in range(len(model.vision["blocks"])):
|
98 |
+
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
|
99 |
+
|
100 |
+
# Layer norms
|
101 |
+
model.vision["blocks"][i]["ln1"].weight.data.copy_(
|
102 |
+
get_tensor(f"{prefix}.norm1.weight")
|
103 |
+
)
|
104 |
+
model.vision["blocks"][i]["ln1"].bias.data.copy_(
|
105 |
+
get_tensor(f"{prefix}.norm1.bias")
|
106 |
+
)
|
107 |
+
model.vision["blocks"][i]["ln2"].weight.data.copy_(
|
108 |
+
get_tensor(f"{prefix}.norm2.weight")
|
109 |
+
)
|
110 |
+
model.vision["blocks"][i]["ln2"].bias.data.copy_(
|
111 |
+
get_tensor(f"{prefix}.norm2.bias")
|
112 |
+
)
|
113 |
+
|
114 |
+
# Attention
|
115 |
+
model.vision["blocks"][i]["attn"]["qkv"].weight.data.copy_(
|
116 |
+
get_tensor(f"{prefix}.attn.qkv.weight")
|
117 |
+
)
|
118 |
+
model.vision["blocks"][i]["attn"]["qkv"].bias.data.copy_(
|
119 |
+
get_tensor(f"{prefix}.attn.qkv.bias")
|
120 |
+
)
|
121 |
+
model.vision["blocks"][i]["attn"]["proj"].weight.data.copy_(
|
122 |
+
get_tensor(f"{prefix}.attn.proj.weight")
|
123 |
+
)
|
124 |
+
model.vision["blocks"][i]["attn"]["proj"].bias.data.copy_(
|
125 |
+
get_tensor(f"{prefix}.attn.proj.bias")
|
126 |
+
)
|
127 |
+
|
128 |
+
# MLP
|
129 |
+
model.vision["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
|
130 |
+
get_tensor(f"{prefix}.mlp.fc1.weight")
|
131 |
+
)
|
132 |
+
model.vision["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
|
133 |
+
get_tensor(f"{prefix}.mlp.fc1.bias")
|
134 |
+
)
|
135 |
+
model.vision["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
|
136 |
+
get_tensor(f"{prefix}.mlp.fc2.weight")
|
137 |
+
)
|
138 |
+
model.vision["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
|
139 |
+
get_tensor(f"{prefix}.mlp.fc2.bias")
|
140 |
+
)
|
141 |
+
|
142 |
+
model.vision["post_ln"].weight.data.copy_(
|
143 |
+
get_tensor("vision_encoder.encoder.model.visual.norm.weight")
|
144 |
+
)
|
145 |
+
model.vision["post_ln"].bias.data.copy_(
|
146 |
+
get_tensor("vision_encoder.encoder.model.visual.norm.bias")
|
147 |
+
)
|
148 |
+
|
149 |
+
model.vision["proj_mlp"]["fc1"].weight.data.copy_(
|
150 |
+
get_tensor("vision_encoder.projection.mlp.fc1.weight")
|
151 |
+
)
|
152 |
+
model.vision["proj_mlp"]["fc1"].bias.data.copy_(
|
153 |
+
get_tensor("vision_encoder.projection.mlp.fc1.bias")
|
154 |
+
)
|
155 |
+
model.vision["proj_mlp"]["fc2"].weight.data.copy_(
|
156 |
+
get_tensor("vision_encoder.projection.mlp.fc2.weight")
|
157 |
+
)
|
158 |
+
model.vision["proj_mlp"]["fc2"].bias.data.copy_(
|
159 |
+
get_tensor("vision_encoder.projection.mlp.fc2.bias")
|
160 |
+
)
|
161 |
+
|
162 |
+
# Text Model
|
163 |
+
model.text.wte.data.copy_(get_tensor("text_model.transformer.embd.wte.weight"))
|
164 |
+
|
165 |
+
for i in range(len(model.text["blocks"])):
|
166 |
+
prefix = f"text_model.transformer.h.{i}"
|
167 |
+
|
168 |
+
# Layer norm
|
169 |
+
model.text["blocks"][i]["ln"].weight.data.copy_(
|
170 |
+
get_tensor(f"{prefix}.ln.weight")
|
171 |
+
)
|
172 |
+
model.text["blocks"][i]["ln"].bias.data.copy_(get_tensor(f"{prefix}.ln.bias"))
|
173 |
+
|
174 |
+
# Attention
|
175 |
+
model.text["blocks"][i]["attn"]["qkv"].weight.data.copy_(
|
176 |
+
get_tensor(f"{prefix}.mixer.Wqkv.weight")
|
177 |
+
)
|
178 |
+
model.text["blocks"][i]["attn"]["qkv"].bias.data.copy_(
|
179 |
+
get_tensor(f"{prefix}.mixer.Wqkv.bias")
|
180 |
+
)
|
181 |
+
model.text["blocks"][i]["attn"]["proj"].weight.data.copy_(
|
182 |
+
get_tensor(f"{prefix}.mixer.out_proj.weight")
|
183 |
+
)
|
184 |
+
model.text["blocks"][i]["attn"]["proj"].bias.data.copy_(
|
185 |
+
get_tensor(f"{prefix}.mixer.out_proj.bias")
|
186 |
+
)
|
187 |
+
|
188 |
+
# MLP
|
189 |
+
model.text["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
|
190 |
+
get_tensor(f"{prefix}.mlp.fc1.weight")
|
191 |
+
)
|
192 |
+
model.text["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
|
193 |
+
get_tensor(f"{prefix}.mlp.fc1.bias")
|
194 |
+
)
|
195 |
+
model.text["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
|
196 |
+
get_tensor(f"{prefix}.mlp.fc2.weight")
|
197 |
+
)
|
198 |
+
model.text["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
|
199 |
+
get_tensor(f"{prefix}.mlp.fc2.bias")
|
200 |
+
)
|
201 |
+
|
202 |
+
model.text["post_ln"].weight.data.copy_(get_tensor("text_model.lm_head.ln.weight"))
|
203 |
+
model.text["post_ln"].bias.data.copy_(get_tensor("text_model.lm_head.ln.bias"))
|
204 |
+
|
205 |
+
model.text["lm_head"].weight.data.copy_(
|
206 |
+
get_tensor("text_model.lm_head.linear.weight")
|
207 |
+
)
|
208 |
+
model.text["lm_head"].bias.data.copy_(get_tensor("text_model.lm_head.linear.bias"))
|
209 |
+
|
210 |
+
# Region Model
|
211 |
+
model.region.coord_features.data.copy_(
|
212 |
+
get_tensor("region_model.coordinate_features.weight").T
|
213 |
+
)
|
214 |
+
model.region["coord_encoder"].weight.data.copy_(
|
215 |
+
get_tensor("region_model.coordinate_encoder.weight")
|
216 |
+
)
|
217 |
+
model.region["coord_encoder"].bias.data.copy_(
|
218 |
+
get_tensor("region_model.coordinate_encoder.bias")
|
219 |
+
)
|
220 |
+
|
221 |
+
model.region["coord_decoder"]["fc1"].weight.data.copy_(
|
222 |
+
get_tensor("region_model.coordinate_decoder.fc1.weight")
|
223 |
+
)
|
224 |
+
model.region["coord_decoder"]["fc1"].bias.data.copy_(
|
225 |
+
get_tensor("region_model.coordinate_decoder.fc1.bias")
|
226 |
+
)
|
227 |
+
model.region["coord_decoder"]["fc2"].weight.data.copy_(
|
228 |
+
get_tensor("region_model.coordinate_decoder.fc2.weight")
|
229 |
+
)
|
230 |
+
model.region["coord_decoder"]["fc2"].bias.data.copy_(
|
231 |
+
get_tensor("region_model.coordinate_decoder.fc2.bias")
|
232 |
+
)
|
233 |
+
|
234 |
+
model.region.size_features.data.copy_(
|
235 |
+
get_tensor("region_model.size_features.weight").T
|
236 |
+
)
|
237 |
+
model.region["size_encoder"].weight.data.copy_(
|
238 |
+
get_tensor("region_model.size_encoder.weight")
|
239 |
+
)
|
240 |
+
model.region["size_encoder"].bias.data.copy_(
|
241 |
+
get_tensor("region_model.size_encoder.bias")
|
242 |
+
)
|
243 |
+
|
244 |
+
model.region["size_decoder"]["fc1"].weight.data.copy_(
|
245 |
+
get_tensor("region_model.size_decoder.fc1.weight")
|
246 |
+
)
|
247 |
+
model.region["size_decoder"]["fc1"].bias.data.copy_(
|
248 |
+
get_tensor("region_model.size_decoder.fc1.bias")
|
249 |
+
)
|
250 |
+
model.region["size_decoder"]["fc2"].weight.data.copy_(
|
251 |
+
get_tensor("region_model.size_decoder.fc2.weight")
|
252 |
+
)
|
253 |
+
model.region["size_decoder"]["fc2"].bias.data.copy_(
|
254 |
+
get_tensor("region_model.size_decoder.fc2.bias")
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
|
259 |
+
"""Load weights from a safetensors file into a MoondreamModel instance."""
|
260 |
+
with safetensors_open(weights_file) as get_tensor:
|
261 |
+
# Wrap the get_tensor function to handle key normalization
|
262 |
+
name_map = {k.replace("._orig_mod", ""): k for k in get_tensor.keys()}
|
263 |
+
_load_weights(lambda x: get_tensor(name_map[x]).to(dtype=torch.float16), model)
|
264 |
+
|
265 |
+
|
266 |
+
def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
|
267 |
+
"""Load weights from a PyTorch file into a MoondreamModel instance."""
|
268 |
+
device = str(torch.empty(0).device)
|
269 |
+
tensors = torch.load(weights_file, map_location=device, weights_only=True)
|
270 |
+
tensors = {
|
271 |
+
k.replace("._orig_mod", ""): v.to(dtype=torch.float16)
|
272 |
+
for k, v in tensors.items()
|
273 |
+
}
|
274 |
+
_load_weights(lambda x: tensors[x], model)
|
275 |
+
|
276 |
+
|
277 |
+
def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
|
278 |
+
"""
|
279 |
+
Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
weights_file: Path to weights file (either .safetensors or .pt)
|
283 |
+
model: MoondreamModel instance to load weights into
|
284 |
+
"""
|
285 |
+
if weights_file.endswith(".safetensors"):
|
286 |
+
load_weights_from_safetensors(weights_file, model)
|
287 |
+
else:
|
288 |
+
load_weights_from_pt(weights_file, model)
|
289 |
+
|
290 |
+
# Make all parameters contiguous
|
291 |
+
for param in model.parameters():
|
292 |
+
param.data = param.data.contiguous()
|