Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -24,6 +24,38 @@ This is a fine-tuned LoRA adapter for generating SVG code from natural language
|
|
| 24 |
## Usage
|
| 25 |
|
| 26 |
Load the model using the transformers library and PEFT for LoRA adapters. Use natural language prompts to generate SVG code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
## Training Data
|
| 29 |
|
|
|
|
| 24 |
## Usage
|
| 25 |
|
| 26 |
Load the model using the transformers library and PEFT for LoRA adapters. Use natural language prompts to generate SVG code.
|
| 27 |
+
```
|
| 28 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 29 |
+
from peft import PeftModel
|
| 30 |
+
|
| 31 |
+
# Load base model and tokenizer
|
| 32 |
+
base_model_name = "your-base-model-name" # Replace with actual base model
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 35 |
+
|
| 36 |
+
# Load LoRA adapter
|
| 37 |
+
model = PeftModel.from_pretrained(model, "your_username/svg-code-generator")
|
| 38 |
+
|
| 39 |
+
# Generate SVG code
|
| 40 |
+
prompt = "Create a blue circle with radius 50"
|
| 41 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 42 |
+
|
| 43 |
+
# Generate with parameters
|
| 44 |
+
outputs = model.generate(
|
| 45 |
+
**inputs,
|
| 46 |
+
max_length=200,
|
| 47 |
+
temperature=0.7,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
pad_token_id=tokenizer.eos_token_id
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Decode the generated SVG code
|
| 53 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
+
svg_code = generated_text[len(prompt):].strip()
|
| 55 |
+
|
| 56 |
+
print("Generated SVG:")
|
| 57 |
+
print(svg_code)
|
| 58 |
+
```
|
| 59 |
|
| 60 |
## Training Data
|
| 61 |
|