Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,98 +1,110 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- virtuoussy/Math-RLVR
|
5 |
-
- virtuoussy/Multi-subject-RLVR
|
6 |
-
language:
|
7 |
-
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
>
|
33 |
-
>
|
34 |
-
>
|
35 |
-
>
|
36 |
-
>
|
37 |
-
>
|
38 |
-
>
|
39 |
-
>
|
40 |
-
>
|
41 |
-
>
|
42 |
-
> **
|
43 |
-
>
|
44 |
-
>
|
45 |
-
>
|
46 |
-
>
|
47 |
-
>
|
48 |
-
> **
|
49 |
-
>
|
50 |
-
>
|
51 |
-
>
|
52 |
-
>
|
53 |
-
>
|
54 |
-
>
|
55 |
-
> question
|
56 |
-
>
|
57 |
-
>
|
58 |
-
>
|
59 |
-
>
|
60 |
-
>
|
61 |
-
>
|
62 |
-
>
|
63 |
-
>
|
64 |
-
>
|
65 |
-
>
|
66 |
-
>
|
67 |
-
>
|
68 |
-
>
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
```
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- virtuoussy/Math-RLVR
|
5 |
+
- virtuoussy/Multi-subject-RLVR
|
6 |
+
language:
|
7 |
+
- zho
|
8 |
+
- eng
|
9 |
+
- fra
|
10 |
+
- spa
|
11 |
+
- por
|
12 |
+
- deu
|
13 |
+
- ita
|
14 |
+
- rus
|
15 |
+
- jpn
|
16 |
+
- kor
|
17 |
+
- vie
|
18 |
+
- tha
|
19 |
+
- ara
|
20 |
+
base_model:
|
21 |
+
- Qwen/Qwen2.5-7B-Instruct
|
22 |
+
---
|
23 |
+
|
24 |
+
Model Details
|
25 |
+
|
26 |
+
The generative reward model used in paper "Expanding RL with Verifiable Rewards Across Diverse Domains".
|
27 |
+
|
28 |
+
Inputting the question, label and the response to be evaluated, the model will judge if the response is right.
|
29 |
+
|
30 |
+
## **Quick start**
|
31 |
+
|
32 |
+
> ```python
|
33 |
+
> # Load model directly
|
34 |
+
> from transformers import AutoTokenizer, AutoModelForCausalLM
|
35 |
+
>
|
36 |
+
> tokenizer = AutoTokenizer.from_pretrained("virtuoussy/Qwen2.5-7B-Instruct-RLVR")
|
37 |
+
> model = AutoModelForCausalLM.from_pretrained("virtuoussy/Qwen2.5-7B-Instruct-RLVR")
|
38 |
+
>
|
39 |
+
> PROMPT= '''
|
40 |
+
> Given a problem, determine whether the final answer in the provided (incomplete) solution process matches the reference answer.
|
41 |
+
> The reference answer may be one single option character (e.g., A, B, C, D), a numerical value, an expression, or a list of answers if multiple questions are involved.
|
42 |
+
> **The reference answer may be in Chinese or another language, but your evaluation should be language-agnostic.**
|
43 |
+
>
|
44 |
+
> Your task:
|
45 |
+
> - Compare the final output of the solution process with the reference answer.
|
46 |
+
> - If they **match exactly**, output **YES**.
|
47 |
+
> - If they **do not match**, output **NO**.
|
48 |
+
> - If the solution process is unclear, incomplete, or ambiguous, assume it is incorrect and output **NO**.
|
49 |
+
>
|
50 |
+
> Your output must be strictly **'YES'** or **'NO'**, with no additional words, punctuation, or explanation.
|
51 |
+
>
|
52 |
+
> ---
|
53 |
+
>
|
54 |
+
> **Question:**
|
55 |
+
> {question}
|
56 |
+
>
|
57 |
+
> **Solution Process (Final Step Only):**
|
58 |
+
> {response}
|
59 |
+
>
|
60 |
+
> **Reference Answer:**
|
61 |
+
> {reference}
|
62 |
+
>
|
63 |
+
> **Output:**
|
64 |
+
> '''
|
65 |
+
>
|
66 |
+
>
|
67 |
+
> question="The founder of China's first public kindergarten teacher training school - Jiangxi Experimental Kindergarten Teacher School is ( )."
|
68 |
+
> label="Chen Heqin"
|
69 |
+
> answer="heqin chen"
|
70 |
+
>
|
71 |
+
> prompt_question = PROMPT.format(question=question, reference=label, response=answer)
|
72 |
+
> messages=[
|
73 |
+
> {"role": "system", "content": "You are a helpful assistant."},
|
74 |
+
> {"role": "user", "content": prompt_question},
|
75 |
+
> ]
|
76 |
+
> input_ids=tokenizer.apply_chat_template(messages,return_tensors="pt")
|
77 |
+
> output=model.generate(input_ids,do_sample=False)
|
78 |
+
> judgement=tokenizer.decode(output[0][input_ids.shape[1]:],skip_special_tokens=True)
|
79 |
+
> print("Model judgement: ",judgement)
|
80 |
+
> ```
|
81 |
+
|
82 |
+
## Use as a remote reward
|
83 |
+
|
84 |
+
```bash
|
85 |
+
# launch a remote reward
|
86 |
+
bash launch_reward.sh {MODEL_PATH} {ANSWER_PATH} {METRIC}
|
87 |
+
|
88 |
+
# MODEL_PATH: the path of our generative reward model.
|
89 |
+
# ANSWER_PATH: the path of the training data.
|
90 |
+
# METRIC: greedy/prob
|
91 |
+
# This will launch a reward at http://127.0.0.1:8000/get_reward
|
92 |
+
|
93 |
+
# train
|
94 |
+
bash train.sh {METHOD} {PRETRAIN_PATH} {DATA_PATH} {REWARD_API}
|
95 |
+
|
96 |
+
# Both train.sh and launch_reward.sh can be found in the model directory.
|
97 |
+
# We will release our github repo soon!
|
98 |
+
```
|
99 |
+
|
100 |
+
|
101 |
+
## Citation
|
102 |
+
|
103 |
+
```bibtex
|
104 |
+
@article{su2025expanding,
|
105 |
+
title={Expanding RL with Verifiable Rewards Across Diverse Domains},
|
106 |
+
author={Su, Yi and Yu, Dian and Song, Linfeng and Li, Juntao and Mi, Haitao and Tu, Zhaopeng and Zhang, Min and Yu, Dong},
|
107 |
+
journal={arXiv preprint arXiv:2503.23829},
|
108 |
+
year={2025}
|
109 |
+
}
|
110 |
```
|