--- language: vi tags: - emotion-recognition - vietnamese - bartpho license: apache-2.0 datasets: - VSMEC metrics: - accuracy - f1 model-index: - name: bartpho-emotion results: - task: type: text-classification name: Emotion Recognition dataset: name: VSMEC type: custom metrics: - name: Accuracy type: accuracy value: - name: F1 Score type: f1 value: base_model: - vinai/bartpho-syllable pipeline_tag: text-classification --- # bartpho-emotion: Emotion Recognition for Vietnamese Text This model is a fine-tuned version of [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) on the **VSMEC** dataset for emotion recognition in Vietnamese text. It achieves state-of-the-art performance on this task. ## Model Details - **Base Model**: [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) - **Dataset**: [VSMEC](https://github.com/uitnlp/vsmec) (Vietnamese Social Media Emotion Corpus) - **Fine-tuning Framework**: HuggingFace Transformers - **Hyperparameters**: - Batch size: `32` - Learning rate: `5e-5` - Epochs: `100` - Max sequence length: `256` ## Dataset The model was trained on the **VSMEC** dataset, which contains Vietnamese social media text annotated with emotion labels. The dataset includes the following emotion categories: `{"Anger": 0, "Disgust": 1, "Enjoyment": 2, "Fear": 3, "Other": 4, "Sadness": 5, "Surprise": 6}`. ## Results The model was evaluated using the following metrics: - **Accuracy**: `` - **F1 Score**: `` ## Usage You can use this model for emotion recognition in Vietnamese text. Below is an example of how to use it with the HuggingFace Transformers library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("visolex/bartpho-emotion") model = AutoModelForSequenceClassification.from_pretrained("visolex/bartpho-emotion") text = "Tôi rất vui vì hôm nay trời đẹp!" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) outputs = model(**inputs) predicted_class = outputs.logits.argmax(dim=-1).item() print(f"Predicted emotion: {predicted_class}")