Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: vi
|
3 |
+
tags:
|
4 |
+
- spam-detection
|
5 |
+
- vietnamese
|
6 |
+
- bartpho
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- visolex/ViSpamReviews
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: bartpho-spam-classification
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: text-classification
|
18 |
+
name: Spam Detection (Multi-Class)
|
19 |
+
dataset:
|
20 |
+
name: ViSpamReviews
|
21 |
+
type: custom
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: <INSERT_ACCURACY>
|
26 |
+
- name: F1 Score
|
27 |
+
type: f1
|
28 |
+
value: <INSERT_F1_SCORE>
|
29 |
+
base_model:
|
30 |
+
- vinai/bartpho-syllable
|
31 |
+
pipeline_tag: text-classification
|
32 |
+
---
|
33 |
+
|
34 |
+
# BARTPho-Spam-MultiClass
|
35 |
+
|
36 |
+
Fine-tuned from [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) on **ViSpamReviews** (multi-class).
|
37 |
+
|
38 |
+
* **Task**: 4-way classification
|
39 |
+
* **Dataset**: [ViSpamReviews](https://huggingface.co/datasets/visolex/ViSpamReviews)
|
40 |
+
* **Hyperparameters**
|
41 |
+
|
42 |
+
* Batch size: 32
|
43 |
+
* LR: 3e-5
|
44 |
+
* Epochs: 100
|
45 |
+
* Max seq len: 256
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("visolex/bartpho-spam-classification")
|
52 |
+
model = AutoModelForSequenceClassification.from_pretrained("visolex/bartpho-spam-classification")
|
53 |
+
|
54 |
+
text = "膼谩nh gi谩 qu谩 chung chung, kh么ng li锚n quan."
|
55 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
|
56 |
+
pred = model(**inputs).logits.argmax(dim=-1).item()
|
57 |
+
label_map = {0: "NO-SPAM",1: "SPAM-1",2: "SPAM-2",3: "SPAM-3"}
|
58 |
+
print(label_map[pred])
|
59 |
+
```
|