--- language: vi tags: - spam-detection - vietnamese - bartpho license: apache-2.0 datasets: - visolex/ViSpamReviews metrics: - accuracy - f1 model-index: - name: bartpho-spam-classification results: - task: type: text-classification name: Spam Detection (Multi-Class) dataset: name: ViSpamReviews type: custom metrics: - name: Accuracy type: accuracy value: - name: F1 Score type: f1 value: base_model: - vinai/bartpho-syllable pipeline_tag: text-classification --- # BARTPho-Spam-MultiClass Fine-tuned from [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) on **ViSpamReviews** (multi-class). * **Task**: 4-way classification * **Dataset**: [ViSpamReviews](https://huggingface.co/datasets/visolex/ViSpamReviews) * **Hyperparameters** * Batch size: 32 * LR: 3e-5 * Epochs: 100 * Max seq len: 256 ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("visolex/bartpho-spam-classification") model = AutoModelForSequenceClassification.from_pretrained("visolex/bartpho-spam-classification") text = "Đánh giá quá chung chung, không liên quan." inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) pred = model(**inputs).logits.argmax(dim=-1).item() label_map = {0: "NO-SPAM",1: "SPAM-1",2: "SPAM-2",3: "SPAM-3"} print(label_map[pred]) ```