viswadarshan06 commited on
Commit
6468bbb
·
verified ·
1 Parent(s): 5c9c755

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -3
README.md CHANGED
@@ -1,3 +1,154 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - nyu-mll/glue
5
+ - google-research-datasets/paws-x
6
+ - tasksource/pit
7
+ - AlekseyKorshuk/quora-question-pairs
8
+ language:
9
+ - en
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ base_model:
14
+ - google-bert/bert-base-cased
15
+ library_name: transformers
16
+ ---
17
+
18
+ # Model Card for Fine-Tuned BERT for Paraphrase Detection
19
+
20
+ ### Model Description
21
+ This is a fine-tuned version of **BERT-base** for **paraphrase detection**, trained on four benchmark datasets: **MRPC, QQP, PAWS-X, and PIT**. The model is designed for applications such as **duplicate content detection, question answering, and semantic similarity analysis**. It offers strong recall capabilities, making it effective in identifying paraphrases even in complex sentence structures.
22
+
23
+ - **Developed by:** Viswadarshan R R
24
+ - **Model Type:** Transformer-based Sentence Pair Classifier
25
+ - **Language:** English
26
+ - **Finetuned from:** `bert-base-cased`
27
+
28
+ ### Model Sources
29
+
30
+ - **Repository:** [Hugging Face Model Hub](https://huggingface.co/viswadarshan06/pd-bert/)
31
+ - **Research Paper:** _Comparative Insights into Modern Architectures for Paraphrase Detection_ (Accepted at ICCIDS 2025)
32
+ - **Demo:** (To be added upon deployment)
33
+
34
+ ## Uses
35
+
36
+ ### Direct Use
37
+ - Identifying **duplicate questions** in customer support and FAQs.
38
+ - Improving **semantic search** in retrieval-based systems.
39
+ - Enhancing **document deduplication** and text similarity applications.
40
+
41
+ ### Downstream Use
42
+ This model can be further fine-tuned on domain-specific paraphrase datasets for industries such as **healthcare, legal, and finance**.
43
+
44
+ ### Out-of-Scope Use
45
+ - The model is **monolingual** and trained only on **English datasets**, requiring additional fine-tuning for multilingual tasks.
46
+ - May struggle with **idiomatic expressions** or complex figurative language.
47
+
48
+ ## Bias, Risks, and Limitations
49
+
50
+ ### Known Limitations
51
+ - **Higher recall but lower precision**: The model tends to over-identify paraphrases, leading to increased false positives.
52
+ - **Contextual ambiguity**: May misinterpret sentences that require deep contextual reasoning.
53
+
54
+ ### Recommendations
55
+ Users can mitigate the **false positive rate** by applying post-processing techniques or confidence threshold tuning.
56
+
57
+ ## How to Get Started with the Model
58
+
59
+ To use the model, install **transformers** and load the fine-tuned model as follows:
60
+
61
+ ```python
62
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
63
+
64
+ # Load the tokenizer and model
65
+ model_path = "viswadarshan06/pd-bert"
66
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
67
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
68
+
69
+ # Encode sentence pairs
70
+ inputs = tokenizer("The car is fast.", "The vehicle moves quickly.", return_tensors="pt", padding=True, truncation=True)
71
+
72
+ # Get predictions
73
+ outputs = model(**inputs)
74
+ logits = outputs.logits
75
+ predicted_class = logits.argmax().item()
76
+ print("Paraphrase" if predicted_class == 1 else "Not a Paraphrase")
77
+ ```
78
+
79
+ ## Training Details
80
+
81
+ This model was trained using a combination of four datasets:
82
+
83
+ - **MRPC**: News-based paraphrases.
84
+ - **QQP**: Duplicate question detection.
85
+ - **PAWS-X**: Adversarial paraphrases for robustness testing.
86
+ - **PIT**: Short-text paraphrase dataset.
87
+
88
+ ### Training Procedure
89
+
90
+ - **Tokenizer**: BERT Tokenizer
91
+ - **Batch Size**: 16
92
+ - **Optimizer**: AdamW
93
+ - **Loss Function**: Cross-entropy
94
+
95
+ #### Training Hyperparameters
96
+ - **Learning Rate**: 2e-5
97
+ - **Sequence Length**:
98
+ - MRPC: 256
99
+ - QQP: 336
100
+ - PIT: 64
101
+ - PAWS-X: 256
102
+
103
+ #### Speeds, Sizes, Times
104
+
105
+ - **GPU Used**: NVIDIA A100
106
+ - **Total Training Time**: ~6 hours
107
+ - **Compute Units Used**: 80
108
+
109
+ ### Testing Data, Factors & Metrics
110
+
111
+ #### Testing Data
112
+ The model was tested on combined test sets and evaluated using:
113
+ - Accuracy
114
+ - Precision
115
+ - Recall
116
+ - F1-Score
117
+ - Runtime
118
+
119
+ ### Results
120
+
121
+ ## **BERT Model Evaluation Metrics**
122
+ | Model | Dataset | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Runtime (sec) |
123
+ |---------|------------|-------------|--------------|------------|-------------|---------------|
124
+ | BERT | MRPC Validation | 88.24 | 88.37 | 95.34 | 91.72 | 1.41 |
125
+ | BERT | MRPC Test | 84.87 | 85.84 | 92.50 | 89.04 | 5.77 |
126
+ | BERT | QQP Validation | 87.92 | 81.44 | 86.86 | 84.06 | 43.24 |
127
+ | BERT | QQP Test | 88.14 | 82.49 | 86.56 | 84.47 | 43.51 |
128
+ | BERT | PAWS-X Validation | 91.90 | 87.57 | 94.67 | 90.98 | 6.73 |
129
+ | BERT | PAWS-X Test | 92.60 | 88.69 | 95.92 | 92.16 | 6.82 |
130
+ | BERT | PIT Validation | 77.38 | 72.41 | 58.57 | 64.76 | 4.34 |
131
+ | BERT | PIT Test | 86.16 | 64.11 | 76.57 | 69.79 | 0.98 |
132
+
133
+ ### Summary
134
+ This **BERT-based Paraphrase Detection Model** demonstrates strong **recall capabilities**, making it highly effective at **identifying paraphrases** across varied linguistic structures. While it tends to overpredict paraphrases, it remains a **strong baseline** for **semantic similarity tasks** and can be fine-tuned further for **domain-specific applications**.
135
+
136
+ ### **Citation**
137
+
138
+ If you use this model, please cite:
139
+
140
+ ```bibtex
141
+ @inproceedings{viswadarshan2025paraphrase,
142
+ title={Comparative Insights into Modern Architectures for Paraphrase Detection},
143
+ author={Viswadarshan R R, Viswaa Selvam S, Felcia Lilian J, Mahalakshmi S},
144
+ booktitle={International Conference on Computational Intelligence, Data Science, and Security (ICCIDS)},
145
+ year={2025},
146
+ publisher={IFIP AICT Series by Springer}
147
+ }
148
+ ```
149
+
150
+ ## Model Card Contact
151
+
152
+ 📧 Email: [email protected]
153
+
154
+ 🔗 GitHub: [Viswadarshan R R](https://github.com/viswadarshan-024)