File size: 11,517 Bytes
5efb267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Qwen3-Omni 智能GPU/CPU Offloading系統
功能: 使用Transformers accelerate的自動offloading,避免手動設備分配問題
策略: 讓accelerate庫自動處理設備間的數據傳輸
"""
import torch
import gc
import time
import warnings
import traceback
import psutil
from transformers import (
Qwen3OmniMoeForConditionalGeneration,
Qwen3OmniMoeProcessor,
)
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
warnings.filterwarnings("ignore")
class SmartOffloadingRunner:
"""智能Offloading推理運行器"""
def __init__(self, model_path: str = "/var/www/qwen_model_quantized"):
self.model_path = model_path
self.model = None
self.processor = None
self.device = None
self.gpu_available = torch.cuda.is_available()
if self.gpu_available:
self.gpu_props = torch.cuda.get_device_properties(0)
self.total_gpu_memory = self.gpu_props.total_memory / 1024**3
# 設置合理的GPU記憶體限制,預留緩衝
self.max_gpu_memory = min(self.total_gpu_memory * 0.85, 24.0) # 最多24GB
else:
self.max_gpu_memory = 0
def get_optimal_device_map(self):
"""獲取最佳設備映射"""
if not self.gpu_available:
print("🖥️ GPU不可用,使用CPU模式")
return "cpu"
print(f"🔍 GPU: {self.gpu_props.name} ({self.total_gpu_memory:.1f}GB)")
print(f"📊 允許GPU使用: {self.max_gpu_memory:.1f}GB")
# 使用accelerate的自動offloading
device_map = "auto"
return device_map
def load_model_with_smart_offloading(self):
"""使用智能offloading載入模型"""
print("🚀 Qwen3-Omni 智能GPU/CPU Offloading系統")
print("=" * 60)
# 記憶體狀態
cpu_memory = psutil.virtual_memory().available / 1024**3
print(f"💾 可用記憶體: CPU {cpu_memory:.1f}GB", end="")
if self.gpu_available:
print(f", GPU {self.total_gpu_memory:.1f}GB")
else:
print()
print("\n📦 載入processor...")
self.processor = Qwen3OmniMoeProcessor.from_pretrained(
self.model_path,
trust_remote_code=True
)
# 設置tokenizer
if self.processor.tokenizer.pad_token is None:
self.processor.tokenizer.pad_token = self.processor.tokenizer.eos_token
print("🧠 使用智能offloading載入模型...")
start_time = time.time()
# 獲取設備映射
device_map = self.get_optimal_device_map()
# 載入模型
try:
if device_map == "cpu":
# 純CPU模式
self.device = "cpu"
torch.set_num_threads(min(8, psutil.cpu_count()))
self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
self.model_path,
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True,
low_cpu_mem_usage=True,
)
# 處理meta device
has_meta = any(p.device.type == 'meta' for p in self.model.parameters())
if has_meta:
print("⚠️ 處理meta device權重...")
self.model = self.model.to_empty(device="cpu")
print("✅ meta device權重已初始化到CPU")
else:
# GPU+CPU offloading模式
self.device = "cuda:0"
# 設置記憶體限制
max_memory = {0: f"{self.max_gpu_memory}GB", "cpu": "60GB"}
self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
self.model_path,
torch_dtype=torch.float16,
device_map=device_map,
max_memory=max_memory,
trust_remote_code=True,
low_cpu_mem_usage=True,
offload_folder="./offload_cache", # offload到磁碟的臨時文件夾
offload_state_dict=True,
)
self.model.eval()
load_time = time.time() - start_time
print(f"✅ 模型載入完成! 用時: {load_time:.1f}秒")
# 顯示最終記憶體使用
print("📊 記憶體使用狀態:")
print(f" CPU: {psutil.virtual_memory().used / 1024**3:.1f}GB")
if self.gpu_available:
gpu_allocated = torch.cuda.memory_allocated() / 1024**3
print(f" GPU: {gpu_allocated:.1f}GB")
# 顯示設備分配摘要
if hasattr(self.model, 'hf_device_map'):
gpu_layers = sum(1 for dev in self.model.hf_device_map.values() if str(dev).startswith('cuda'))
cpu_layers = sum(1 for dev in self.model.hf_device_map.values() if str(dev) == 'cpu')
print(f"🎯 設備分配: GPU層數={gpu_layers}, CPU層數={cpu_layers}")
return True
except Exception as e:
print(f"❌ 載入失敗: {e}")
print("🔄 回退到CPU模式...")
return self.fallback_to_cpu()
def fallback_to_cpu(self):
"""回退到CPU模式"""
try:
self.device = "cpu"
torch.set_num_threads(6)
# 不使用device_map,避免自動分配問題
self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
self.model_path,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True,
)
# 處理meta device
has_meta = any(p.device.type == 'meta' for p in self.model.parameters())
if has_meta:
print("⚠️ CPU模式處理meta device...")
self.model = self.model.to_empty(device="cpu")
print("✅ CPU模式載入完成")
else:
# 確保模型在CPU上
self.model = self.model.to("cpu")
print("✅ CPU模式載入完成")
self.model.eval()
return True
except Exception as e:
print(f"❌ CPU模式也失敗: {e}")
traceback.print_exc()
return False
def generate_response(self, prompt: str, max_tokens: int = 128) -> tuple:
"""生成回應"""
start_time = time.time()
# 準備輸入
inputs = self.processor.tokenizer(
prompt,
return_tensors="pt",
max_length=2048,
truncation=True
)
# 確定主設備
main_device = "cuda:0" if (self.gpu_available and hasattr(self.model, 'hf_device_map')) else "cpu"
# 將輸入移到主設備
if main_device == "cuda:0":
inputs = {k: v.to(main_device) for k, v in inputs.items()}
print(f"💭 生成中... (主設備: {main_device})")
# 生成
with torch.no_grad():
outputs = self.model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs.get('attention_mask'),
max_new_tokens=max_tokens,
do_sample=False, # 使用greedy解碼避免採樣問題
num_beams=1,
pad_token_id=self.processor.tokenizer.eos_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
)
# 解碼
response = self.processor.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
).strip()
# 統計
gen_time = time.time() - start_time
new_tokens = outputs.shape[1] - inputs['input_ids'].shape[1]
tokens_per_sec = new_tokens / gen_time if gen_time > 0 else 0
# 清理
del inputs, outputs
if self.gpu_available:
torch.cuda.empty_cache()
gc.collect()
stats = {
'generation_time': gen_time,
'new_tokens': new_tokens,
'tokens_per_second': tokens_per_sec,
'main_device': main_device
}
return response, stats
def run_tests(self):
"""運行測試"""
test_prompts = [
"你好,請用一句話介紹你自己。",
"什麼是人工智能?",
]
print("\n🧪 智能Offloading測試...")
print("-" * 50)
total_tokens = 0
total_time = 0
for i, prompt in enumerate(test_prompts, 1):
print(f"\n📝 測試 {i}/{len(test_prompts)}: {prompt}")
try:
response, stats = self.generate_response(prompt, max_tokens=80)
print(f"⚡ 速度: {stats['tokens_per_second']:.2f} tokens/秒")
print(f"📤 回應: {response}")
total_tokens += stats['new_tokens']
total_time += stats['generation_time']
except Exception as e:
print(f"❌ 測試失敗: {e}")
print("🔍 詳細錯誤:")
traceback.print_exc()
# 性能總結
if total_time > 0:
avg_speed = total_tokens / total_time
print(f"\n📈 Offloading性能總結:")
print(f" 平均速度: {avg_speed:.2f} tokens/秒")
print(f" 總tokens: {total_tokens}")
print(f" 總用時: {total_time:.2f}秒")
# 最終記憶體狀態
print(f" 最終CPU記憶體: {psutil.virtual_memory().used / 1024**3:.1f}GB")
if self.gpu_available:
print(f" 最終GPU記憶體: {torch.cuda.memory_allocated() / 1024**3:.1f}GB")
def cleanup(self):
"""清理資源"""
if self.model is not None:
del self.model
if self.processor is not None:
del self.processor
if self.gpu_available:
torch.cuda.empty_cache()
gc.collect()
# 清理offload緩存
import shutil
import os
if os.path.exists("./offload_cache"):
shutil.rmtree("./offload_cache")
print("🧹 資源清理完成")
def main():
runner = SmartOffloadingRunner()
try:
# 載入模型
success = runner.load_model_with_smart_offloading()
if success:
# 運行測試
runner.run_tests()
print("\n🎉 智能Offloading測試完成!")
print("💡 提示: 使用accelerate自動offloading,GPU+CPU協同工作")
else:
print("💥 載入失敗")
except Exception as e:
print(f"❌ 執行失敗: {e}")
traceback.print_exc()
finally:
runner.cleanup()
if __name__ == "__main__":
main()
|