File size: 11,517 Bytes
5efb267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
Qwen3-Omni 智能GPU/CPU Offloading系統
功能: 使用Transformers accelerate的自動offloading,避免手動設備分配問題
策略: 讓accelerate庫自動處理設備間的數據傳輸
"""

import torch
import gc
import time
import warnings
import traceback
import psutil
from transformers import (
    Qwen3OmniMoeForConditionalGeneration,
    Qwen3OmniMoeProcessor,
)
from accelerate import init_empty_weights, load_checkpoint_and_dispatch

warnings.filterwarnings("ignore")

class SmartOffloadingRunner:
    """智能Offloading推理運行器"""
    
    def __init__(self, model_path: str = "/var/www/qwen_model_quantized"):
        self.model_path = model_path
        self.model = None
        self.processor = None
        self.device = None
        self.gpu_available = torch.cuda.is_available()
        
        if self.gpu_available:
            self.gpu_props = torch.cuda.get_device_properties(0)
            self.total_gpu_memory = self.gpu_props.total_memory / 1024**3
            # 設置合理的GPU記憶體限制,預留緩衝
            self.max_gpu_memory = min(self.total_gpu_memory * 0.85, 24.0)  # 最多24GB
        else:
            self.max_gpu_memory = 0
    
    def get_optimal_device_map(self):
        """獲取最佳設備映射"""
        if not self.gpu_available:
            print("🖥️ GPU不可用,使用CPU模式")
            return "cpu"
        
        print(f"🔍 GPU: {self.gpu_props.name} ({self.total_gpu_memory:.1f}GB)")
        print(f"📊 允許GPU使用: {self.max_gpu_memory:.1f}GB")
        
        # 使用accelerate的自動offloading
        device_map = "auto"
        return device_map
    
    def load_model_with_smart_offloading(self):
        """使用智能offloading載入模型"""
        print("🚀 Qwen3-Omni 智能GPU/CPU Offloading系統")
        print("=" * 60)
        
        # 記憶體狀態
        cpu_memory = psutil.virtual_memory().available / 1024**3
        print(f"💾 可用記憶體: CPU {cpu_memory:.1f}GB", end="")
        if self.gpu_available:
            print(f", GPU {self.total_gpu_memory:.1f}GB")
        else:
            print()
        
        print("\n📦 載入processor...")
        self.processor = Qwen3OmniMoeProcessor.from_pretrained(
            self.model_path,
            trust_remote_code=True
        )
        
        # 設置tokenizer
        if self.processor.tokenizer.pad_token is None:
            self.processor.tokenizer.pad_token = self.processor.tokenizer.eos_token
        
        print("🧠 使用智能offloading載入模型...")
        start_time = time.time()
        
        # 獲取設備映射
        device_map = self.get_optimal_device_map()
        
        # 載入模型
        try:
            if device_map == "cpu":
                # 純CPU模式
                self.device = "cpu"
                torch.set_num_threads(min(8, psutil.cpu_count()))
                
                self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
                    self.model_path,
                    torch_dtype=torch.float32,
                    device_map="cpu",
                    trust_remote_code=True,
                    low_cpu_mem_usage=True,
                )
                
                # 處理meta device
                has_meta = any(p.device.type == 'meta' for p in self.model.parameters())
                if has_meta:
                    print("⚠️ 處理meta device權重...")
                    self.model = self.model.to_empty(device="cpu")
                    print("✅ meta device權重已初始化到CPU")
                
            else:
                # GPU+CPU offloading模式
                self.device = "cuda:0"
                
                # 設置記憶體限制
                max_memory = {0: f"{self.max_gpu_memory}GB", "cpu": "60GB"}
                
                self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
                    self.model_path,
                    torch_dtype=torch.float16,
                    device_map=device_map,
                    max_memory=max_memory,
                    trust_remote_code=True,
                    low_cpu_mem_usage=True,
                    offload_folder="./offload_cache",  # offload到磁碟的臨時文件夾
                    offload_state_dict=True,
                )
            
            self.model.eval()
            load_time = time.time() - start_time
            
            print(f"✅ 模型載入完成! 用時: {load_time:.1f}秒")
            
            # 顯示最終記憶體使用
            print("📊 記憶體使用狀態:")
            print(f"  CPU: {psutil.virtual_memory().used / 1024**3:.1f}GB")
            if self.gpu_available:
                gpu_allocated = torch.cuda.memory_allocated() / 1024**3
                print(f"  GPU: {gpu_allocated:.1f}GB")
            
            # 顯示設備分配摘要
            if hasattr(self.model, 'hf_device_map'):
                gpu_layers = sum(1 for dev in self.model.hf_device_map.values() if str(dev).startswith('cuda'))
                cpu_layers = sum(1 for dev in self.model.hf_device_map.values() if str(dev) == 'cpu')
                print(f"🎯 設備分配: GPU層數={gpu_layers}, CPU層數={cpu_layers}")
            
            return True
            
        except Exception as e:
            print(f"❌ 載入失敗: {e}")
            print("🔄 回退到CPU模式...")
            return self.fallback_to_cpu()
    
    def fallback_to_cpu(self):
        """回退到CPU模式"""
        try:
            self.device = "cpu"
            torch.set_num_threads(6)
            
            # 不使用device_map,避免自動分配問題
            self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
                self.model_path,
                torch_dtype=torch.float32,
                trust_remote_code=True,
                low_cpu_mem_usage=True,
            )
            
            # 處理meta device
            has_meta = any(p.device.type == 'meta' for p in self.model.parameters())
            if has_meta:
                print("⚠️ CPU模式處理meta device...")
                self.model = self.model.to_empty(device="cpu")
                print("✅ CPU模式載入完成")
            else:
                # 確保模型在CPU上
                self.model = self.model.to("cpu")
                print("✅ CPU模式載入完成")
            
            self.model.eval()
            return True
            
        except Exception as e:
            print(f"❌ CPU模式也失敗: {e}")
            traceback.print_exc()
            return False
    
    def generate_response(self, prompt: str, max_tokens: int = 128) -> tuple:
        """生成回應"""
        start_time = time.time()
        
        # 準備輸入
        inputs = self.processor.tokenizer(
            prompt,
            return_tensors="pt",
            max_length=2048,
            truncation=True
        )
        
        # 確定主設備
        main_device = "cuda:0" if (self.gpu_available and hasattr(self.model, 'hf_device_map')) else "cpu"
        
        # 將輸入移到主設備
        if main_device == "cuda:0":
            inputs = {k: v.to(main_device) for k, v in inputs.items()}
        
        print(f"💭 生成中... (主設備: {main_device})")
        
        # 生成
        with torch.no_grad():
            outputs = self.model.generate(
                input_ids=inputs['input_ids'],
                attention_mask=inputs.get('attention_mask'),
                max_new_tokens=max_tokens,
                do_sample=False,  # 使用greedy解碼避免採樣問題
                num_beams=1,
                pad_token_id=self.processor.tokenizer.eos_token_id,
                eos_token_id=self.processor.tokenizer.eos_token_id,
            )
        
        # 解碼
        response = self.processor.tokenizer.decode(
            outputs[0][inputs['input_ids'].shape[1]:],
            skip_special_tokens=True
        ).strip()
        
        # 統計
        gen_time = time.time() - start_time
        new_tokens = outputs.shape[1] - inputs['input_ids'].shape[1]
        tokens_per_sec = new_tokens / gen_time if gen_time > 0 else 0
        
        # 清理
        del inputs, outputs
        if self.gpu_available:
            torch.cuda.empty_cache()
        gc.collect()
        
        stats = {
            'generation_time': gen_time,
            'new_tokens': new_tokens,
            'tokens_per_second': tokens_per_sec,
            'main_device': main_device
        }
        
        return response, stats
    
    def run_tests(self):
        """運行測試"""
        test_prompts = [
            "你好,請用一句話介紹你自己。",
            "什麼是人工智能?",
        ]
        
        print("\n🧪 智能Offloading測試...")
        print("-" * 50)
        
        total_tokens = 0
        total_time = 0
        
        for i, prompt in enumerate(test_prompts, 1):
            print(f"\n📝 測試 {i}/{len(test_prompts)}: {prompt}")
            
            try:
                response, stats = self.generate_response(prompt, max_tokens=80)
                
                print(f"⚡ 速度: {stats['tokens_per_second']:.2f} tokens/秒")
                print(f"📤 回應: {response}")
                
                total_tokens += stats['new_tokens']
                total_time += stats['generation_time']
                
            except Exception as e:
                print(f"❌ 測試失敗: {e}")
                print("🔍 詳細錯誤:")
                traceback.print_exc()
        
        # 性能總結
        if total_time > 0:
            avg_speed = total_tokens / total_time
            print(f"\n📈 Offloading性能總結:")
            print(f"  平均速度: {avg_speed:.2f} tokens/秒")
            print(f"  總tokens: {total_tokens}")
            print(f"  總用時: {total_time:.2f}秒")
            
            # 最終記憶體狀態
            print(f"  最終CPU記憶體: {psutil.virtual_memory().used / 1024**3:.1f}GB")
            if self.gpu_available:
                print(f"  最終GPU記憶體: {torch.cuda.memory_allocated() / 1024**3:.1f}GB")
    
    def cleanup(self):
        """清理資源"""
        if self.model is not None:
            del self.model
        if self.processor is not None:
            del self.processor
        
        if self.gpu_available:
            torch.cuda.empty_cache()
        gc.collect()
        
        # 清理offload緩存
        import shutil
        import os
        if os.path.exists("./offload_cache"):
            shutil.rmtree("./offload_cache")
        
        print("🧹 資源清理完成")

def main():
    runner = SmartOffloadingRunner()
    
    try:
        # 載入模型
        success = runner.load_model_with_smart_offloading()
        
        if success:
            # 運行測試
            runner.run_tests()
            
            print("\n🎉 智能Offloading測試完成!")
            print("💡 提示: 使用accelerate自動offloading,GPU+CPU協同工作")
        else:
            print("💥 載入失敗")
        
    except Exception as e:
        print(f"❌ 執行失敗: {e}")
        traceback.print_exc()
    
    finally:
        runner.cleanup()

if __name__ == "__main__":
    main()