noeedc
commited on
Commit
·
7d97c60
1
Parent(s):
be815d2
Add initial model configuration, implementation, and inference example
Browse files- config.json +9 -0
- dehazeformer.py +1018 -0
- inference_example.py +30 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "dehazeformer",
|
3 |
+
"architectures": ["DehazeFormerMCTWrapper"],
|
4 |
+
"auto_map": {
|
5 |
+
"AutoModel": "dehazeformer.DehazeFormerMCTWrapper",
|
6 |
+
"AutoConfig": "dehazeformer.DehazeFormerConfig"
|
7 |
+
},
|
8 |
+
"trust_remote_code": true
|
9 |
+
}
|
dehazeformer.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import math
|
11 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
12 |
+
from timm.models.layers import trunc_normal_
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
class RLN(nn.Module):
|
17 |
+
r"""Revised LayerNorm"""
|
18 |
+
|
19 |
+
def __init__(self, dim, eps=1e-5, detach_grad=False):
|
20 |
+
super(RLN, self).__init__()
|
21 |
+
self.eps = eps
|
22 |
+
self.detach_grad = detach_grad
|
23 |
+
|
24 |
+
self.weight = nn.Parameter(torch.ones((1, dim, 1, 1)))
|
25 |
+
self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1)))
|
26 |
+
|
27 |
+
self.meta1 = nn.Conv2d(1, dim, 1)
|
28 |
+
self.meta2 = nn.Conv2d(1, dim, 1)
|
29 |
+
|
30 |
+
trunc_normal_(self.meta1.weight, std=0.02)
|
31 |
+
nn.init.constant_(self.meta1.bias, 1)
|
32 |
+
|
33 |
+
trunc_normal_(self.meta2.weight, std=0.02)
|
34 |
+
nn.init.constant_(self.meta2.bias, 0)
|
35 |
+
|
36 |
+
def forward(self, input):
|
37 |
+
mean = torch.mean(input, dim=(1, 2, 3), keepdim=True)
|
38 |
+
std = torch.sqrt(
|
39 |
+
(input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps
|
40 |
+
)
|
41 |
+
|
42 |
+
normalized_input = (input - mean) / std
|
43 |
+
|
44 |
+
if self.detach_grad:
|
45 |
+
rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach())
|
46 |
+
else:
|
47 |
+
rescale, rebias = self.meta1(std), self.meta2(mean)
|
48 |
+
|
49 |
+
out = normalized_input * self.weight + self.bias
|
50 |
+
return out, rescale, rebias
|
51 |
+
|
52 |
+
|
53 |
+
class Mlp(nn.Module):
|
54 |
+
def __init__(
|
55 |
+
self, network_depth, in_features, hidden_features=None, out_features=None
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
out_features = out_features or in_features
|
59 |
+
hidden_features = hidden_features or in_features
|
60 |
+
|
61 |
+
self.network_depth = network_depth
|
62 |
+
|
63 |
+
self.mlp = nn.Sequential(
|
64 |
+
nn.Conv2d(in_features, hidden_features, 1),
|
65 |
+
nn.ReLU(True),
|
66 |
+
nn.Conv2d(hidden_features, out_features, 1),
|
67 |
+
)
|
68 |
+
|
69 |
+
self.apply(self._init_weights)
|
70 |
+
|
71 |
+
def _init_weights(self, m):
|
72 |
+
if isinstance(m, nn.Conv2d):
|
73 |
+
gain = (8 * self.network_depth) ** (-1 / 4)
|
74 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
|
75 |
+
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
76 |
+
trunc_normal_(m.weight, std=std)
|
77 |
+
if m.bias is not None:
|
78 |
+
nn.init.constant_(m.bias, 0)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
return self.mlp(x)
|
82 |
+
|
83 |
+
|
84 |
+
def window_partition(x, window_size):
|
85 |
+
B, H, W, C = x.shape
|
86 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
87 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C)
|
88 |
+
return windows
|
89 |
+
|
90 |
+
|
91 |
+
def window_reverse(windows, window_size, H, W):
|
92 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
93 |
+
x = windows.view(
|
94 |
+
B, H // window_size, W // window_size, window_size, window_size, -1
|
95 |
+
)
|
96 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
97 |
+
return x
|
98 |
+
|
99 |
+
|
100 |
+
def get_relative_positions(window_size):
|
101 |
+
coords_h = torch.arange(window_size)
|
102 |
+
coords_w = torch.arange(window_size)
|
103 |
+
|
104 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
105 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
106 |
+
relative_positions = (
|
107 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
108 |
+
) # 2, Wh*Ww, Wh*Ww
|
109 |
+
|
110 |
+
relative_positions = relative_positions.permute(
|
111 |
+
1, 2, 0
|
112 |
+
).contiguous() # Wh*Ww, Wh*Ww, 2
|
113 |
+
relative_positions_log = torch.sign(relative_positions) * torch.log(
|
114 |
+
1.0 + relative_positions.abs()
|
115 |
+
)
|
116 |
+
|
117 |
+
return relative_positions_log
|
118 |
+
|
119 |
+
|
120 |
+
class WindowAttention(nn.Module):
|
121 |
+
def __init__(self, dim, window_size, num_heads):
|
122 |
+
|
123 |
+
super().__init__()
|
124 |
+
self.dim = dim
|
125 |
+
self.window_size = window_size # Wh, Ww
|
126 |
+
self.num_heads = num_heads
|
127 |
+
head_dim = dim // num_heads
|
128 |
+
self.scale = head_dim**-0.5
|
129 |
+
|
130 |
+
relative_positions = get_relative_positions(self.window_size)
|
131 |
+
self.register_buffer("relative_positions", relative_positions)
|
132 |
+
self.meta = nn.Sequential(
|
133 |
+
nn.Linear(2, 256, bias=True),
|
134 |
+
nn.ReLU(True),
|
135 |
+
nn.Linear(256, num_heads, bias=True),
|
136 |
+
)
|
137 |
+
|
138 |
+
self.softmax = nn.Softmax(dim=-1)
|
139 |
+
|
140 |
+
def forward(self, qkv):
|
141 |
+
B_, N, _ = qkv.shape
|
142 |
+
|
143 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(
|
144 |
+
2, 0, 3, 1, 4
|
145 |
+
)
|
146 |
+
|
147 |
+
q, k, v = (
|
148 |
+
qkv[0],
|
149 |
+
qkv[1],
|
150 |
+
qkv[2],
|
151 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
152 |
+
|
153 |
+
q = q * self.scale
|
154 |
+
attn = q @ k.transpose(-2, -1)
|
155 |
+
|
156 |
+
relative_position_bias = self.meta(self.relative_positions)
|
157 |
+
relative_position_bias = relative_position_bias.permute(
|
158 |
+
2, 0, 1
|
159 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
160 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
161 |
+
|
162 |
+
attn = self.softmax(attn)
|
163 |
+
|
164 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim)
|
165 |
+
return x
|
166 |
+
|
167 |
+
|
168 |
+
class Attention(nn.Module):
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
network_depth,
|
172 |
+
dim,
|
173 |
+
num_heads,
|
174 |
+
window_size,
|
175 |
+
shift_size,
|
176 |
+
use_attn=False,
|
177 |
+
conv_type=None,
|
178 |
+
):
|
179 |
+
super().__init__()
|
180 |
+
self.dim = dim
|
181 |
+
self.head_dim = int(dim // num_heads)
|
182 |
+
self.num_heads = num_heads
|
183 |
+
|
184 |
+
self.window_size = window_size
|
185 |
+
self.shift_size = shift_size
|
186 |
+
|
187 |
+
self.network_depth = network_depth
|
188 |
+
self.use_attn = use_attn
|
189 |
+
self.conv_type = conv_type
|
190 |
+
|
191 |
+
if self.conv_type == "Conv":
|
192 |
+
self.conv = nn.Sequential(
|
193 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode="reflect"),
|
194 |
+
nn.ReLU(True),
|
195 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode="reflect"),
|
196 |
+
)
|
197 |
+
|
198 |
+
if self.conv_type == "DWConv":
|
199 |
+
self.conv = nn.Conv2d(
|
200 |
+
dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode="reflect"
|
201 |
+
)
|
202 |
+
|
203 |
+
if self.conv_type == "DWConv" or self.use_attn:
|
204 |
+
self.V = nn.Conv2d(dim, dim, 1)
|
205 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
206 |
+
|
207 |
+
if self.use_attn:
|
208 |
+
self.QK = nn.Conv2d(dim, dim * 2, 1)
|
209 |
+
self.attn = WindowAttention(dim, window_size, num_heads)
|
210 |
+
|
211 |
+
self.apply(self._init_weights)
|
212 |
+
|
213 |
+
def _init_weights(self, m):
|
214 |
+
if isinstance(m, nn.Conv2d):
|
215 |
+
w_shape = m.weight.shape
|
216 |
+
|
217 |
+
if w_shape[0] == self.dim * 2: # QK
|
218 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
|
219 |
+
std = math.sqrt(2.0 / float(fan_in + fan_out))
|
220 |
+
trunc_normal_(m.weight, std=std)
|
221 |
+
else:
|
222 |
+
gain = (8 * self.network_depth) ** (-1 / 4)
|
223 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(m.weight)
|
224 |
+
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
225 |
+
trunc_normal_(m.weight, std=std)
|
226 |
+
|
227 |
+
if m.bias is not None:
|
228 |
+
nn.init.constant_(m.bias, 0)
|
229 |
+
|
230 |
+
def check_size(self, x, shift=False):
|
231 |
+
_, _, h, w = x.size()
|
232 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
233 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
234 |
+
|
235 |
+
if shift:
|
236 |
+
x = F.pad(
|
237 |
+
x,
|
238 |
+
(
|
239 |
+
self.shift_size,
|
240 |
+
(self.window_size - self.shift_size + mod_pad_w) % self.window_size,
|
241 |
+
self.shift_size,
|
242 |
+
(self.window_size - self.shift_size + mod_pad_h) % self.window_size,
|
243 |
+
),
|
244 |
+
mode="reflect",
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
|
248 |
+
return x
|
249 |
+
|
250 |
+
def forward(self, X):
|
251 |
+
B, C, H, W = X.shape
|
252 |
+
|
253 |
+
if self.conv_type == "DWConv" or self.use_attn:
|
254 |
+
V = self.V(X)
|
255 |
+
|
256 |
+
if self.use_attn:
|
257 |
+
QK = self.QK(X)
|
258 |
+
QKV = torch.cat([QK, V], dim=1)
|
259 |
+
|
260 |
+
# shift
|
261 |
+
shifted_QKV = self.check_size(QKV, self.shift_size > 0)
|
262 |
+
Ht, Wt = shifted_QKV.shape[2:]
|
263 |
+
|
264 |
+
# partition windows
|
265 |
+
shifted_QKV = shifted_QKV.permute(0, 2, 3, 1)
|
266 |
+
qkv = window_partition(
|
267 |
+
shifted_QKV, self.window_size
|
268 |
+
) # nW*B, window_size**2, C
|
269 |
+
|
270 |
+
attn_windows = self.attn(qkv)
|
271 |
+
|
272 |
+
# merge windows
|
273 |
+
shifted_out = window_reverse(
|
274 |
+
attn_windows, self.window_size, Ht, Wt
|
275 |
+
) # B H' W' C
|
276 |
+
|
277 |
+
# reverse cyclic shift
|
278 |
+
out = shifted_out[
|
279 |
+
:,
|
280 |
+
self.shift_size : (self.shift_size + H),
|
281 |
+
self.shift_size : (self.shift_size + W),
|
282 |
+
:,
|
283 |
+
]
|
284 |
+
attn_out = out.permute(0, 3, 1, 2)
|
285 |
+
|
286 |
+
if self.conv_type in ["Conv", "DWConv"]:
|
287 |
+
conv_out = self.conv(V)
|
288 |
+
out = self.proj(conv_out + attn_out)
|
289 |
+
else:
|
290 |
+
out = self.proj(attn_out)
|
291 |
+
|
292 |
+
else:
|
293 |
+
if self.conv_type == "Conv":
|
294 |
+
out = self.conv(X) # no attention and use conv, no projection
|
295 |
+
elif self.conv_type == "DWConv":
|
296 |
+
out = self.proj(self.conv(V))
|
297 |
+
|
298 |
+
return out
|
299 |
+
|
300 |
+
|
301 |
+
class TransformerBlock(nn.Module):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
network_depth,
|
305 |
+
dim,
|
306 |
+
num_heads,
|
307 |
+
mlp_ratio=4.0,
|
308 |
+
norm_layer=nn.LayerNorm,
|
309 |
+
mlp_norm=False,
|
310 |
+
window_size=8,
|
311 |
+
shift_size=0,
|
312 |
+
use_attn=True,
|
313 |
+
conv_type=None,
|
314 |
+
):
|
315 |
+
super().__init__()
|
316 |
+
self.use_attn = use_attn
|
317 |
+
self.mlp_norm = mlp_norm
|
318 |
+
|
319 |
+
self.norm1 = norm_layer(dim) if use_attn else nn.Identity()
|
320 |
+
self.attn = Attention(
|
321 |
+
network_depth,
|
322 |
+
dim,
|
323 |
+
num_heads=num_heads,
|
324 |
+
window_size=window_size,
|
325 |
+
shift_size=shift_size,
|
326 |
+
use_attn=use_attn,
|
327 |
+
conv_type=conv_type,
|
328 |
+
)
|
329 |
+
|
330 |
+
self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity()
|
331 |
+
self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio))
|
332 |
+
|
333 |
+
def forward(self, x):
|
334 |
+
identity = x
|
335 |
+
if self.use_attn:
|
336 |
+
x, rescale, rebias = self.norm1(x)
|
337 |
+
x = self.attn(x)
|
338 |
+
if self.use_attn:
|
339 |
+
x = x * rescale + rebias
|
340 |
+
x = identity + x
|
341 |
+
|
342 |
+
identity = x
|
343 |
+
if self.use_attn and self.mlp_norm:
|
344 |
+
x, rescale, rebias = self.norm2(x)
|
345 |
+
x = self.mlp(x)
|
346 |
+
if self.use_attn and self.mlp_norm:
|
347 |
+
x = x * rescale + rebias
|
348 |
+
x = identity + x
|
349 |
+
return x
|
350 |
+
|
351 |
+
|
352 |
+
class BasicLayer(nn.Module):
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
network_depth,
|
356 |
+
dim,
|
357 |
+
depth,
|
358 |
+
num_heads,
|
359 |
+
mlp_ratio=4.0,
|
360 |
+
norm_layer=nn.LayerNorm,
|
361 |
+
window_size=8,
|
362 |
+
attn_ratio=0.0,
|
363 |
+
attn_loc="last",
|
364 |
+
conv_type=None,
|
365 |
+
):
|
366 |
+
|
367 |
+
super().__init__()
|
368 |
+
self.dim = dim
|
369 |
+
self.depth = depth
|
370 |
+
|
371 |
+
attn_depth = attn_ratio * depth
|
372 |
+
|
373 |
+
if attn_loc == "last":
|
374 |
+
use_attns = [i >= depth - attn_depth for i in range(depth)]
|
375 |
+
elif attn_loc == "first":
|
376 |
+
use_attns = [i < attn_depth for i in range(depth)]
|
377 |
+
elif attn_loc == "middle":
|
378 |
+
use_attns = [
|
379 |
+
i >= (depth - attn_depth) // 2 and i < (depth + attn_depth) // 2
|
380 |
+
for i in range(depth)
|
381 |
+
]
|
382 |
+
|
383 |
+
# build blocks
|
384 |
+
self.blocks = nn.ModuleList(
|
385 |
+
[
|
386 |
+
TransformerBlock(
|
387 |
+
network_depth=network_depth,
|
388 |
+
dim=dim,
|
389 |
+
num_heads=num_heads,
|
390 |
+
mlp_ratio=mlp_ratio,
|
391 |
+
norm_layer=norm_layer,
|
392 |
+
window_size=window_size,
|
393 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
394 |
+
use_attn=use_attns[i],
|
395 |
+
conv_type=conv_type,
|
396 |
+
)
|
397 |
+
for i in range(depth)
|
398 |
+
]
|
399 |
+
)
|
400 |
+
|
401 |
+
def forward(self, x):
|
402 |
+
for blk in self.blocks:
|
403 |
+
x = blk(x)
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
class PatchEmbed(nn.Module):
|
408 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None):
|
409 |
+
super().__init__()
|
410 |
+
self.in_chans = in_chans
|
411 |
+
self.embed_dim = embed_dim
|
412 |
+
|
413 |
+
if kernel_size is None:
|
414 |
+
kernel_size = patch_size
|
415 |
+
|
416 |
+
self.proj = nn.Conv2d(
|
417 |
+
in_chans,
|
418 |
+
embed_dim,
|
419 |
+
kernel_size=kernel_size,
|
420 |
+
stride=patch_size,
|
421 |
+
padding=(kernel_size - patch_size + 1) // 2,
|
422 |
+
padding_mode="reflect",
|
423 |
+
)
|
424 |
+
|
425 |
+
def forward(self, x):
|
426 |
+
x = self.proj(x)
|
427 |
+
return x
|
428 |
+
|
429 |
+
|
430 |
+
class PatchUnEmbed(nn.Module):
|
431 |
+
def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None):
|
432 |
+
super().__init__()
|
433 |
+
self.out_chans = out_chans
|
434 |
+
self.embed_dim = embed_dim
|
435 |
+
|
436 |
+
if kernel_size is None:
|
437 |
+
kernel_size = 1
|
438 |
+
|
439 |
+
self.proj = nn.Sequential(
|
440 |
+
nn.Conv2d(
|
441 |
+
embed_dim,
|
442 |
+
out_chans * patch_size**2,
|
443 |
+
kernel_size=kernel_size,
|
444 |
+
padding=kernel_size // 2,
|
445 |
+
padding_mode="reflect",
|
446 |
+
),
|
447 |
+
nn.PixelShuffle(patch_size),
|
448 |
+
)
|
449 |
+
|
450 |
+
def forward(self, x):
|
451 |
+
x = self.proj(x)
|
452 |
+
return x
|
453 |
+
|
454 |
+
|
455 |
+
class SKFusion(nn.Module):
|
456 |
+
def __init__(self, dim, height=2, reduction=8):
|
457 |
+
super(SKFusion, self).__init__()
|
458 |
+
|
459 |
+
self.height = height
|
460 |
+
d = max(int(dim / reduction), 4)
|
461 |
+
|
462 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
463 |
+
self.mlp = nn.Sequential(
|
464 |
+
nn.Conv2d(dim, d, 1, bias=False),
|
465 |
+
nn.ReLU(),
|
466 |
+
nn.Conv2d(d, dim * height, 1, bias=False),
|
467 |
+
)
|
468 |
+
|
469 |
+
self.softmax = nn.Softmax(dim=1)
|
470 |
+
|
471 |
+
def forward(self, in_feats):
|
472 |
+
B, C, H, W = in_feats[0].shape
|
473 |
+
|
474 |
+
in_feats = torch.cat(in_feats, dim=1)
|
475 |
+
in_feats = in_feats.view(B, self.height, C, H, W)
|
476 |
+
|
477 |
+
feats_sum = torch.sum(in_feats, dim=1)
|
478 |
+
attn = self.mlp(self.avg_pool(feats_sum))
|
479 |
+
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
|
480 |
+
|
481 |
+
out = torch.sum(in_feats * attn, dim=1)
|
482 |
+
return out
|
483 |
+
|
484 |
+
|
485 |
+
class DehazeFormer(nn.Module):
|
486 |
+
def __init__(
|
487 |
+
self,
|
488 |
+
in_chans=3,
|
489 |
+
out_chans=4,
|
490 |
+
window_size=8,
|
491 |
+
embed_dims=[24, 48, 96, 48, 24],
|
492 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
493 |
+
depths=[16, 16, 16, 8, 8],
|
494 |
+
num_heads=[2, 4, 6, 1, 1],
|
495 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
496 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
497 |
+
norm_layer=[RLN, RLN, RLN, RLN, RLN],
|
498 |
+
):
|
499 |
+
super(DehazeFormer, self).__init__()
|
500 |
+
|
501 |
+
# setting
|
502 |
+
self.patch_size = 4
|
503 |
+
self.window_size = window_size
|
504 |
+
self.mlp_ratios = mlp_ratios
|
505 |
+
|
506 |
+
# split image into non-overlapping patches
|
507 |
+
self.patch_embed = PatchEmbed(
|
508 |
+
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3
|
509 |
+
)
|
510 |
+
|
511 |
+
# backbone
|
512 |
+
self.layer1 = BasicLayer(
|
513 |
+
network_depth=sum(depths),
|
514 |
+
dim=embed_dims[0],
|
515 |
+
depth=depths[0],
|
516 |
+
num_heads=num_heads[0],
|
517 |
+
mlp_ratio=mlp_ratios[0],
|
518 |
+
norm_layer=norm_layer[0],
|
519 |
+
window_size=window_size,
|
520 |
+
attn_ratio=attn_ratio[0],
|
521 |
+
attn_loc="last",
|
522 |
+
conv_type=conv_type[0],
|
523 |
+
)
|
524 |
+
|
525 |
+
self.patch_merge1 = PatchEmbed(
|
526 |
+
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]
|
527 |
+
)
|
528 |
+
|
529 |
+
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)
|
530 |
+
|
531 |
+
self.layer2 = BasicLayer(
|
532 |
+
network_depth=sum(depths),
|
533 |
+
dim=embed_dims[1],
|
534 |
+
depth=depths[1],
|
535 |
+
num_heads=num_heads[1],
|
536 |
+
mlp_ratio=mlp_ratios[1],
|
537 |
+
norm_layer=norm_layer[1],
|
538 |
+
window_size=window_size,
|
539 |
+
attn_ratio=attn_ratio[1],
|
540 |
+
attn_loc="last",
|
541 |
+
conv_type=conv_type[1],
|
542 |
+
)
|
543 |
+
|
544 |
+
self.patch_merge2 = PatchEmbed(
|
545 |
+
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]
|
546 |
+
)
|
547 |
+
|
548 |
+
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)
|
549 |
+
|
550 |
+
self.layer3 = BasicLayer(
|
551 |
+
network_depth=sum(depths),
|
552 |
+
dim=embed_dims[2],
|
553 |
+
depth=depths[2],
|
554 |
+
num_heads=num_heads[2],
|
555 |
+
mlp_ratio=mlp_ratios[2],
|
556 |
+
norm_layer=norm_layer[2],
|
557 |
+
window_size=window_size,
|
558 |
+
attn_ratio=attn_ratio[2],
|
559 |
+
attn_loc="last",
|
560 |
+
conv_type=conv_type[2],
|
561 |
+
)
|
562 |
+
|
563 |
+
self.patch_split1 = PatchUnEmbed(
|
564 |
+
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2]
|
565 |
+
)
|
566 |
+
|
567 |
+
assert embed_dims[1] == embed_dims[3]
|
568 |
+
self.fusion1 = SKFusion(embed_dims[3])
|
569 |
+
|
570 |
+
self.layer4 = BasicLayer(
|
571 |
+
network_depth=sum(depths),
|
572 |
+
dim=embed_dims[3],
|
573 |
+
depth=depths[3],
|
574 |
+
num_heads=num_heads[3],
|
575 |
+
mlp_ratio=mlp_ratios[3],
|
576 |
+
norm_layer=norm_layer[3],
|
577 |
+
window_size=window_size,
|
578 |
+
attn_ratio=attn_ratio[3],
|
579 |
+
attn_loc="last",
|
580 |
+
conv_type=conv_type[3],
|
581 |
+
)
|
582 |
+
|
583 |
+
self.patch_split2 = PatchUnEmbed(
|
584 |
+
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3]
|
585 |
+
)
|
586 |
+
|
587 |
+
assert embed_dims[0] == embed_dims[4]
|
588 |
+
self.fusion2 = SKFusion(embed_dims[4])
|
589 |
+
|
590 |
+
self.layer5 = BasicLayer(
|
591 |
+
network_depth=sum(depths),
|
592 |
+
dim=embed_dims[4],
|
593 |
+
depth=depths[4],
|
594 |
+
num_heads=num_heads[4],
|
595 |
+
mlp_ratio=mlp_ratios[4],
|
596 |
+
norm_layer=norm_layer[4],
|
597 |
+
window_size=window_size,
|
598 |
+
attn_ratio=attn_ratio[4],
|
599 |
+
attn_loc="last",
|
600 |
+
conv_type=conv_type[4],
|
601 |
+
)
|
602 |
+
|
603 |
+
# merge non-overlapping patches into image
|
604 |
+
self.patch_unembed = PatchUnEmbed(
|
605 |
+
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3
|
606 |
+
)
|
607 |
+
|
608 |
+
def check_image_size(self, x):
|
609 |
+
# NOTE: for I2I test
|
610 |
+
_, _, h, w = x.size()
|
611 |
+
mod_pad_h = (self.patch_size - h % self.patch_size) % self.patch_size
|
612 |
+
mod_pad_w = (self.patch_size - w % self.patch_size) % self.patch_size
|
613 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
|
614 |
+
return x
|
615 |
+
|
616 |
+
def forward_features(self, x):
|
617 |
+
x = self.patch_embed(x)
|
618 |
+
x = self.layer1(x)
|
619 |
+
skip1 = x
|
620 |
+
|
621 |
+
x = self.patch_merge1(x)
|
622 |
+
x = self.layer2(x)
|
623 |
+
skip2 = x
|
624 |
+
|
625 |
+
x = self.patch_merge2(x)
|
626 |
+
x = self.layer3(x)
|
627 |
+
x = self.patch_split1(x)
|
628 |
+
|
629 |
+
x = self.fusion1([x, self.skip2(skip2)]) + x
|
630 |
+
x = self.layer4(x)
|
631 |
+
x = self.patch_split2(x)
|
632 |
+
|
633 |
+
x = self.fusion2([x, self.skip1(skip1)]) + x
|
634 |
+
x = self.layer5(x)
|
635 |
+
x = self.patch_unembed(x)
|
636 |
+
return x
|
637 |
+
|
638 |
+
def forward(self, x):
|
639 |
+
H, W = x.shape[2:]
|
640 |
+
x = self.check_image_size(x)
|
641 |
+
|
642 |
+
feat = self.forward_features(x)
|
643 |
+
K, B = torch.split(feat, (1, 3), dim=1)
|
644 |
+
|
645 |
+
x = K * x - B + x
|
646 |
+
x = x[:, :, :H, :W]
|
647 |
+
return x
|
648 |
+
|
649 |
+
|
650 |
+
def dehazeformer_t():
|
651 |
+
return DehazeFormer(
|
652 |
+
embed_dims=[24, 48, 96, 48, 24],
|
653 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
654 |
+
depths=[4, 4, 4, 2, 2],
|
655 |
+
num_heads=[2, 4, 6, 1, 1],
|
656 |
+
attn_ratio=[0, 1 / 2, 1, 0, 0],
|
657 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
def dehazeformer_s():
|
662 |
+
return DehazeFormer(
|
663 |
+
embed_dims=[24, 48, 96, 48, 24],
|
664 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
665 |
+
depths=[8, 8, 8, 4, 4],
|
666 |
+
num_heads=[2, 4, 6, 1, 1],
|
667 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
668 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
669 |
+
)
|
670 |
+
|
671 |
+
|
672 |
+
def dehazeformer_b():
|
673 |
+
return DehazeFormer(
|
674 |
+
embed_dims=[24, 48, 96, 48, 24],
|
675 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
676 |
+
depths=[16, 16, 16, 8, 8],
|
677 |
+
num_heads=[2, 4, 6, 1, 1],
|
678 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
679 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
680 |
+
)
|
681 |
+
|
682 |
+
|
683 |
+
def dehazeformer_d():
|
684 |
+
return DehazeFormer(
|
685 |
+
embed_dims=[24, 48, 96, 48, 24],
|
686 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
687 |
+
depths=[32, 32, 32, 16, 16],
|
688 |
+
num_heads=[2, 4, 6, 1, 1],
|
689 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
690 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
691 |
+
)
|
692 |
+
|
693 |
+
|
694 |
+
def dehazeformer_w():
|
695 |
+
return DehazeFormer(
|
696 |
+
embed_dims=[48, 96, 192, 96, 48],
|
697 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
698 |
+
depths=[16, 16, 16, 8, 8],
|
699 |
+
num_heads=[2, 4, 6, 1, 1],
|
700 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
701 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
702 |
+
)
|
703 |
+
|
704 |
+
|
705 |
+
def dehazeformer_m():
|
706 |
+
return DehazeFormer(
|
707 |
+
embed_dims=[24, 48, 96, 48, 24],
|
708 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
709 |
+
depths=[12, 12, 12, 6, 6],
|
710 |
+
num_heads=[2, 4, 6, 1, 1],
|
711 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
712 |
+
conv_type=["Conv", "Conv", "Conv", "Conv", "Conv"],
|
713 |
+
)
|
714 |
+
|
715 |
+
|
716 |
+
def dehazeformer_l():
|
717 |
+
return DehazeFormer(
|
718 |
+
embed_dims=[48, 96, 192, 96, 48],
|
719 |
+
mlp_ratios=[2.0, 4.0, 4.0, 2.0, 2.0],
|
720 |
+
depths=[16, 16, 16, 12, 12],
|
721 |
+
num_heads=[2, 4, 6, 1, 1],
|
722 |
+
attn_ratio=[1 / 4, 1 / 2, 3 / 4, 0, 0],
|
723 |
+
conv_type=["Conv", "Conv", "Conv", "Conv", "Conv"],
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
class DehazeFormerMCT(nn.Module):
|
728 |
+
def __init__(
|
729 |
+
self,
|
730 |
+
in_chans=3,
|
731 |
+
out_chans=3,
|
732 |
+
window_size=8,
|
733 |
+
embed_dims=[24, 48, 96, 48, 24],
|
734 |
+
mlp_ratios=[2.0, 2.0, 4.0, 2.0, 2.0],
|
735 |
+
depths=[4, 4, 8, 4, 4],
|
736 |
+
num_heads=[2, 4, 6, 4, 2],
|
737 |
+
attn_ratio=[1.0, 1.0, 1.0, 1.0, 1.0],
|
738 |
+
conv_type=["DWConv", "DWConv", "DWConv", "DWConv", "DWConv"],
|
739 |
+
norm_layer=[RLN, RLN, RLN, RLN, RLN],
|
740 |
+
):
|
741 |
+
super(DehazeFormerMCT, self).__init__()
|
742 |
+
|
743 |
+
# setting
|
744 |
+
self.patch_size = 4
|
745 |
+
self.window_size = window_size
|
746 |
+
self.mlp_ratios = mlp_ratios
|
747 |
+
|
748 |
+
# split image into non-overlapping patches
|
749 |
+
self.patch_embed = PatchEmbed(
|
750 |
+
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3
|
751 |
+
)
|
752 |
+
|
753 |
+
# backbone
|
754 |
+
self.layer1 = BasicLayer(
|
755 |
+
network_depth=sum(depths),
|
756 |
+
dim=embed_dims[0],
|
757 |
+
depth=depths[0],
|
758 |
+
num_heads=num_heads[0],
|
759 |
+
mlp_ratio=mlp_ratios[0],
|
760 |
+
norm_layer=norm_layer[0],
|
761 |
+
window_size=window_size,
|
762 |
+
attn_ratio=attn_ratio[0],
|
763 |
+
attn_loc="last",
|
764 |
+
conv_type=conv_type[0],
|
765 |
+
)
|
766 |
+
|
767 |
+
self.patch_merge1 = PatchEmbed(
|
768 |
+
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]
|
769 |
+
)
|
770 |
+
|
771 |
+
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)
|
772 |
+
|
773 |
+
self.layer2 = BasicLayer(
|
774 |
+
network_depth=sum(depths),
|
775 |
+
dim=embed_dims[1],
|
776 |
+
depth=depths[1],
|
777 |
+
num_heads=num_heads[1],
|
778 |
+
mlp_ratio=mlp_ratios[1],
|
779 |
+
norm_layer=norm_layer[1],
|
780 |
+
window_size=window_size,
|
781 |
+
attn_ratio=attn_ratio[1],
|
782 |
+
attn_loc="last",
|
783 |
+
conv_type=conv_type[1],
|
784 |
+
)
|
785 |
+
|
786 |
+
self.patch_merge2 = PatchEmbed(
|
787 |
+
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]
|
788 |
+
)
|
789 |
+
|
790 |
+
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)
|
791 |
+
|
792 |
+
self.layer3 = BasicLayer(
|
793 |
+
network_depth=sum(depths),
|
794 |
+
dim=embed_dims[2],
|
795 |
+
depth=depths[2],
|
796 |
+
num_heads=num_heads[2],
|
797 |
+
mlp_ratio=mlp_ratios[2],
|
798 |
+
norm_layer=norm_layer[2],
|
799 |
+
window_size=window_size,
|
800 |
+
attn_ratio=attn_ratio[2],
|
801 |
+
attn_loc="last",
|
802 |
+
conv_type=conv_type[2],
|
803 |
+
)
|
804 |
+
|
805 |
+
self.patch_split1 = PatchUnEmbed(
|
806 |
+
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2]
|
807 |
+
)
|
808 |
+
|
809 |
+
assert embed_dims[1] == embed_dims[3]
|
810 |
+
self.fusion1 = SKFusion(embed_dims[3])
|
811 |
+
|
812 |
+
self.layer4 = BasicLayer(
|
813 |
+
network_depth=sum(depths),
|
814 |
+
dim=embed_dims[3],
|
815 |
+
depth=depths[3],
|
816 |
+
num_heads=num_heads[3],
|
817 |
+
mlp_ratio=mlp_ratios[3],
|
818 |
+
norm_layer=norm_layer[3],
|
819 |
+
window_size=window_size,
|
820 |
+
attn_ratio=attn_ratio[3],
|
821 |
+
attn_loc="last",
|
822 |
+
conv_type=conv_type[3],
|
823 |
+
)
|
824 |
+
|
825 |
+
self.patch_split2 = PatchUnEmbed(
|
826 |
+
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3]
|
827 |
+
)
|
828 |
+
|
829 |
+
assert embed_dims[0] == embed_dims[4]
|
830 |
+
self.fusion2 = SKFusion(embed_dims[4])
|
831 |
+
|
832 |
+
self.layer5 = BasicLayer(
|
833 |
+
network_depth=sum(depths),
|
834 |
+
dim=embed_dims[4],
|
835 |
+
depth=depths[4],
|
836 |
+
num_heads=num_heads[4],
|
837 |
+
mlp_ratio=mlp_ratios[4],
|
838 |
+
norm_layer=norm_layer[4],
|
839 |
+
window_size=window_size,
|
840 |
+
attn_ratio=attn_ratio[4],
|
841 |
+
attn_loc="last",
|
842 |
+
conv_type=conv_type[4],
|
843 |
+
)
|
844 |
+
|
845 |
+
# merge non-overlapping patches into image
|
846 |
+
self.patch_unembed = PatchUnEmbed(
|
847 |
+
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3
|
848 |
+
)
|
849 |
+
|
850 |
+
def forward(self, x, x_ref=None):
|
851 |
+
x = self.patch_embed(x)
|
852 |
+
if x_ref is not None:
|
853 |
+
x_ref = self.patch_embed(x_ref)
|
854 |
+
x = torch.cat([x, x_ref], dim=3)
|
855 |
+
|
856 |
+
x = self.layer1(x)
|
857 |
+
skip1 = x
|
858 |
+
|
859 |
+
x = self.patch_merge1(x)
|
860 |
+
x = self.layer2(x)
|
861 |
+
skip2 = x
|
862 |
+
|
863 |
+
x = self.patch_merge2(x)
|
864 |
+
x = self.layer3(x)
|
865 |
+
x = self.patch_split1(x)
|
866 |
+
|
867 |
+
x = self.fusion1([x, self.skip2(skip2)]) + x
|
868 |
+
x = self.layer4(x)
|
869 |
+
x = self.patch_split2(x)
|
870 |
+
|
871 |
+
x = self.fusion2([x, self.skip1(skip1)]) + x
|
872 |
+
x = self.layer5(x)
|
873 |
+
if x_ref is not None:
|
874 |
+
x, x_ref = torch.split(x, (x.shape[3] // 2, x.shape[3] // 2), dim=3)
|
875 |
+
x = self.patch_unembed(x)
|
876 |
+
return x
|
877 |
+
|
878 |
+
|
879 |
+
class dehazeformer_mct(nn.Module):
|
880 |
+
def __init__(self, rf_combine_type=None):
|
881 |
+
super(dehazeformer_mct, self).__init__()
|
882 |
+
self.ts = 256
|
883 |
+
self.l = 8
|
884 |
+
|
885 |
+
self.dims = 3 * 3 * self.l
|
886 |
+
self.rf_combine_type = rf_combine_type
|
887 |
+
|
888 |
+
## Reference frame combination type if enabled
|
889 |
+
if self.rf_combine_type == 'concat-channel':
|
890 |
+
print('Loading Reference Frame model of type: Channel Concat!!')
|
891 |
+
self.basenet = DehazeFormerMCT(6, self.dims)
|
892 |
+
elif self.rf_combine_type == 'concat-spatial':
|
893 |
+
print('Loading Reference Frame model of type: Spatial Concat!!')
|
894 |
+
self.basenet = DehazeFormerMCT(3, self.dims)
|
895 |
+
else: ## default
|
896 |
+
print('Loading default MCT model without reference frame')
|
897 |
+
self.basenet = DehazeFormerMCT(3, self.dims)
|
898 |
+
|
899 |
+
def get_coord(self, x):
|
900 |
+
B, _, H, W = x.size()
|
901 |
+
|
902 |
+
coordh, coordw = torch.meshgrid(
|
903 |
+
[torch.linspace(-1, 1, H), torch.linspace(-1, 1, W)], indexing="ij"
|
904 |
+
)
|
905 |
+
coordh = coordh.unsqueeze(0).unsqueeze(1).repeat(B, 1, 1, 1)
|
906 |
+
coordw = coordw.unsqueeze(0).unsqueeze(1).repeat(B, 1, 1, 1)
|
907 |
+
|
908 |
+
return coordw.detach(), coordh.detach()
|
909 |
+
|
910 |
+
def mapping(self, x, param):
|
911 |
+
# curves
|
912 |
+
curve = torch.stack(torch.chunk(param, 3, dim=1), dim=1)
|
913 |
+
curve_list = list(torch.chunk(curve, 3, dim=2))
|
914 |
+
|
915 |
+
# grid: x, y, z -> w, h, d ~[-1 ,1]
|
916 |
+
x_list = list(torch.chunk(x.detach(), 3, dim=1))
|
917 |
+
coordw, coordh = self.get_coord(x)
|
918 |
+
coordh, coordw = coordh.to(device), coordw.to(device)
|
919 |
+
grid_list = [torch.stack([coordw, coordh, x_i], dim=4) for x_i in x_list]
|
920 |
+
|
921 |
+
# mapping
|
922 |
+
out = sum(
|
923 |
+
[
|
924 |
+
F.grid_sample(curve_i, grid_i, "bilinear", "border", True)
|
925 |
+
for curve_i, grid_i in zip(curve_list, grid_list)
|
926 |
+
]
|
927 |
+
).squeeze(2)
|
928 |
+
|
929 |
+
return out # no Tanh is much better than using Tanh
|
930 |
+
|
931 |
+
def forward(self, x, ref=None):
|
932 |
+
# param input
|
933 |
+
x_d = F.interpolate(x, (self.ts, self.ts), mode='area')
|
934 |
+
if ref is not None:
|
935 |
+
r_d = F.interpolate(ref, (self.ts, self.ts), mode='area')
|
936 |
+
|
937 |
+
# Reference frame at input
|
938 |
+
if self.rf_combine_type == 'concat-channel' and ref is not None:
|
939 |
+
inputs = torch.cat([x_d, r_d], dim=1)
|
940 |
+
param = self.basenet(inputs)
|
941 |
+
elif self.rf_combine_type == 'concat-spatial' and ref is not None:
|
942 |
+
param = self.basenet(x_d, r_d)
|
943 |
+
else: # default
|
944 |
+
param = self.basenet(x_d)
|
945 |
+
|
946 |
+
return self.mapping(x, param)
|
947 |
+
|
948 |
+
# Dehazeformer configuration class
|
949 |
+
class DehazeFormerConfig(PretrainedConfig):
|
950 |
+
model_type = "dehazeformer"
|
951 |
+
|
952 |
+
def __init__(
|
953 |
+
self,
|
954 |
+
rf_combine_type="concat-channel",
|
955 |
+
ts=256,
|
956 |
+
l=8,
|
957 |
+
**kwargs
|
958 |
+
):
|
959 |
+
self.rf_combine_type = rf_combine_type
|
960 |
+
self.ts = ts
|
961 |
+
self.l = l
|
962 |
+
super().__init__(**kwargs)
|
963 |
+
|
964 |
+
class DehazeFormerMCTWrapper(PreTrainedModel):
|
965 |
+
config_class = DehazeFormerConfig
|
966 |
+
|
967 |
+
def __init__(self, config):
|
968 |
+
super().__init__(config)
|
969 |
+
self.model = dehazeformer_mct(rf_combine_type=config.rf_combine_type)
|
970 |
+
self.normalize = transforms.Normalize(mean=[0.5]*3, std=[0.5]*3)
|
971 |
+
|
972 |
+
def preprocess(self, img):
|
973 |
+
"""Preprocess input image to tensor format"""
|
974 |
+
if isinstance(img, Image.Image):
|
975 |
+
tensor = transforms.ToTensor()(img).unsqueeze(0)
|
976 |
+
elif isinstance(img, torch.Tensor):
|
977 |
+
tensor = img.unsqueeze(0) if img.dim() == 3 else img
|
978 |
+
else:
|
979 |
+
raise TypeError(f"Unsupported input type: {type(img)}. Expected PIL.Image or torch.Tensor.")
|
980 |
+
return self.normalize(tensor).to(self.device)
|
981 |
+
|
982 |
+
def forward(self, input_img, ref_img=None, **kwargs):
|
983 |
+
"""
|
984 |
+
Forward pass for the DehazeFormer model
|
985 |
+
|
986 |
+
Args:
|
987 |
+
input_img: Input hazy image (PIL.Image or torch.Tensor)
|
988 |
+
ref_img: Reference frame image (PIL.Image or torch.Tensor)
|
989 |
+
|
990 |
+
Returns:
|
991 |
+
torch.Tensor: Dehazed output image
|
992 |
+
"""
|
993 |
+
# Preprocess inputs
|
994 |
+
x = self.preprocess(input_img)
|
995 |
+
|
996 |
+
if ref_img is not None:
|
997 |
+
ref_x = self.preprocess(ref_img)
|
998 |
+
|
999 |
+
# Forward pass with reference frame
|
1000 |
+
if self.model.rf_combine_type == 'concat-channel':
|
1001 |
+
# Pass original image and reference separately to the model
|
1002 |
+
# The model will handle the concatenation internally
|
1003 |
+
output = self.model(x, ref_x)
|
1004 |
+
elif self.model.rf_combine_type == 'concat-spatial':
|
1005 |
+
# Spatial concatenation handled inside model
|
1006 |
+
output = self.model(x, ref_x)
|
1007 |
+
else:
|
1008 |
+
# Default: no reference frame
|
1009 |
+
output = self.model(x)
|
1010 |
+
else:
|
1011 |
+
# Forward pass without reference frame
|
1012 |
+
output = self.model(x)
|
1013 |
+
|
1014 |
+
# Denormalize output: [-1, 1] → [0, 1]
|
1015 |
+
output = ((output + 1) / 2).clamp(0, 1)
|
1016 |
+
|
1017 |
+
# Remove batch dimension if single image
|
1018 |
+
return output.squeeze(0) if output.size(0) == 1 else output
|
inference_example.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
# Change working directory to the script’s folder
|
8 |
+
# os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
9 |
+
|
10 |
+
# Set device
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# Load the model
|
14 |
+
model = AutoModel.from_pretrained("./claris_rf_channel", trust_remote_code=True)
|
15 |
+
model.to(device)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
# Load input + reference frames
|
19 |
+
input_img = Image.open("claris_rf_channel/sample_img.png").convert("RGB")
|
20 |
+
ref_img = Image.open("claris_rf_channel/ref_img.png").convert("RGB")
|
21 |
+
|
22 |
+
# Inference
|
23 |
+
with torch.no_grad():
|
24 |
+
output = model(input_img, ref_img)
|
25 |
+
|
26 |
+
# Convert to PIL and save
|
27 |
+
output_pil = transforms.ToPILImage()(output.cpu())
|
28 |
+
output_pil.save("output_img_rfchannel.png")
|
29 |
+
|
30 |
+
print("Saved output as 'output_img_rfchannel.png'")
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cce89f744b2e8a7344e387dbaafd1c34ce3122fd05f349c2f7517d4d97534e2
|
3 |
+
size 5907859
|