from transformers import AutoModel import torch from PIL import Image import os from torchvision import transforms # Change working directory to the script’s folder os.chdir(os.path.dirname(os.path.abspath(__file__))) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model model = AutoModel.from_pretrained("vopeai/claris_rf_channel", trust_remote_code=True) model.to(device) model.eval() # Load input + reference frames input_img = Image.open("sample_img.png").convert("RGB") ref_img = Image.open("ref_img.png").convert("RGB") # Inference with torch.no_grad(): output = model(input_img, ref_img) # Convert to PIL and save output_pil = transforms.ToPILImage()(output.cpu()) output_pil.save("output_img_rfchannel.png") print("Saved output as 'output_img_rfchannel.png'")