Update README.md
Browse files
README.md
CHANGED
|
@@ -3,7 +3,7 @@ license: apache-2.0
|
|
| 3 |
---
|
| 4 |
ONNX format of voxreality/whisper-small-el-adapters model
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
```python
|
| 9 |
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
|
@@ -14,48 +14,13 @@ from datasets import Audio, load_dataset
|
|
| 14 |
model_id = "voxreality/whisper-small-el-adapters-onnx"
|
| 15 |
processor = WhisperProcessor.from_pretrained(model_id)
|
| 16 |
model = ORTModelForSpeechSeq2Seq.from_pretrained(model_id)
|
| 17 |
-
# model.save_pretrained("whisper-small-el-finetune_onnx")
|
| 18 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language="greek", task="transcribe")
|
| 19 |
-
# load streaming dataset and read first audio sample
|
| 20 |
-
ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
|
| 21 |
-
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 22 |
-
input_speech = next(iter(ds))["audio"]
|
| 23 |
-
input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
| 24 |
-
|
| 25 |
-
# Generate token ids (without 'use_adapters', as it is not needed)
|
| 26 |
-
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 27 |
-
|
| 28 |
-
# Decode token ids to text
|
| 29 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 30 |
-
|
| 31 |
-
print(transcription)
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
Run on GPU
|
| 35 |
-
|
| 36 |
-
```python
|
| 37 |
-
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
| 38 |
-
from transformers import WhisperProcessor
|
| 39 |
-
from datasets import Audio, load_dataset
|
| 40 |
-
|
| 41 |
-
model_id = "voxreality/whisper-small-el-adapters-onnx" # ONNX model path
|
| 42 |
-
|
| 43 |
-
# Load model with CUDA provider for GPU inference
|
| 44 |
-
model = ORTModelForSpeechSeq2Seq.from_pretrained(model_id, provider="CUDAExecutionProvider")
|
| 45 |
-
|
| 46 |
-
# Load processor
|
| 47 |
-
processor = WhisperProcessor.from_pretrained("voxreality/whisper-small-el-adapters")
|
| 48 |
-
|
| 49 |
-
# Get decoder prompt ids
|
| 50 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="greek", task="transcribe")
|
| 51 |
|
| 52 |
# Load streaming dataset and read first audio sample
|
| 53 |
ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
|
| 54 |
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 55 |
input_speech = next(iter(ds))["audio"]
|
| 56 |
-
|
| 57 |
-
# Process input features
|
| 58 |
-
input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features.to('cuda') # Move inputs to GPU
|
| 59 |
|
| 60 |
# Generate token ids (without 'use_adapters', as it is not needed)
|
| 61 |
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
|
|
|
| 3 |
---
|
| 4 |
ONNX format of voxreality/whisper-small-el-adapters model
|
| 5 |
|
| 6 |
+
Model inference example:
|
| 7 |
|
| 8 |
```python
|
| 9 |
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
|
|
|
| 14 |
model_id = "voxreality/whisper-small-el-adapters-onnx"
|
| 15 |
processor = WhisperProcessor.from_pretrained(model_id)
|
| 16 |
model = ORTModelForSpeechSeq2Seq.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="greek", task="transcribe")
|
| 18 |
|
| 19 |
# Load streaming dataset and read first audio sample
|
| 20 |
ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
|
| 21 |
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 22 |
input_speech = next(iter(ds))["audio"]
|
| 23 |
+
input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Generate token ids (without 'use_adapters', as it is not needed)
|
| 26 |
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|