--- tags: - mteb model-index: - name: universal-sentence-encoder-4 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 70.67164179104478 - type: ap value: 32.834763426716584 - type: f1 value: 64.42714654873818 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 67.73207500000001 - type: ap value: 62.47524029220297 - type: f1 value: 67.48570902687877 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 32.62 - type: f1 value: 32.13548057908922 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 35.12555128655114 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 23.456590839508902 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 64.7357059982867 - type: cos_sim_spearman value: 63.37975740377988 - type: euclidean_pearson value: 63.49896800825232 - type: euclidean_spearman value: 63.37975740377988 - type: manhattan_pearson value: 64.00838198208166 - type: manhattan_spearman value: 63.31710537380123 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 74.12012987012989 - type: f1 value: 73.23976030012078 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 31.169576856541603 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 18.81055418061209 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 38.64000000000001 - type: f1 value: 35.09699868913662 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 68.43239999999999 - type: ap value: 62.76719976357937 - type: f1 value: 68.3208799558774 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.11627906976744 - type: f1 value: 89.69218132313695 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 64.9954400364797 - type: f1 value: 46.61477433032086 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.23268325487558 - type: f1 value: 64.41484453213448 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.78749159381303 - type: f1 value: 71.69036260308698 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 28.88138682114816 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 23.311493283906064 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 49.71559043766936 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 57.91704617095672 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 77.38041457279672 - type: cos_sim_spearman value: 69.79282361714223 - type: euclidean_pearson value: 74.02315074475364 - type: euclidean_spearman value: 69.79282304260158 - type: manhattan_pearson value: 73.01688608657159 - type: manhattan_spearman value: 68.22940563625058 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 72.58420052741107 - type: cos_sim_spearman value: 67.05792005966953 - type: euclidean_pearson value: 68.35629372749483 - type: euclidean_spearman value: 67.05773819854602 - type: manhattan_pearson value: 67.12625747442266 - type: manhattan_spearman value: 65.7252617197503 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 69.55548148750847 - type: cos_sim_spearman value: 71.54484814980987 - type: euclidean_pearson value: 71.22072782671158 - type: euclidean_spearman value: 71.54484814980987 - type: manhattan_pearson value: 70.3490839338159 - type: manhattan_spearman value: 70.76414952692804 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 73.74818660795891 - type: cos_sim_spearman value: 70.59138342620027 - type: euclidean_pearson value: 72.60887534657319 - type: euclidean_spearman value: 70.5913727471932 - type: manhattan_pearson value: 71.95704368086712 - type: manhattan_spearman value: 69.58620240967204 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 79.6360473168554 - type: cos_sim_spearman value: 80.26596000690931 - type: euclidean_pearson value: 79.82176999472074 - type: euclidean_spearman value: 80.26596000690931 - type: manhattan_pearson value: 78.94486463380255 - type: manhattan_spearman value: 79.20674341072848 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 74.84322872565855 - type: cos_sim_spearman value: 75.75894131062728 - type: euclidean_pearson value: 75.5333191548161 - type: euclidean_spearman value: 75.75894090191032 - type: manhattan_pearson value: 74.96648591478875 - type: manhattan_spearman value: 75.07346800275856 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 83.79136005773537 - type: cos_sim_spearman value: 84.94411992446793 - type: euclidean_pearson value: 83.60843297866558 - type: euclidean_spearman value: 84.94411992446793 - type: manhattan_pearson value: 82.81698401022742 - type: manhattan_spearman value: 84.02022263657062 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.02909344132073 - type: cos_sim_spearman value: 60.000369508382704 - type: euclidean_pearson value: 61.54466129341342 - type: euclidean_spearman value: 60.000369508382704 - type: manhattan_pearson value: 58.76127065249476 - type: manhattan_spearman value: 58.08063159428285 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 78.72737325889034 - type: cos_sim_spearman value: 77.08420739421672 - type: euclidean_pearson value: 77.85606384422326 - type: euclidean_spearman value: 77.08420739421672 - type: manhattan_pearson value: 76.63643674764234 - type: manhattan_spearman value: 75.68141928725497 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.61980198019802 - type: cos_sim_ap value: 86.36827719686161 - type: cos_sim_f1 value: 80.35625927758537 - type: cos_sim_precision value: 79.52987267384917 - type: cos_sim_recall value: 81.2 - type: dot_accuracy value: 99.61980198019802 - type: dot_ap value: 86.36827719686161 - type: dot_f1 value: 80.35625927758537 - type: dot_precision value: 79.52987267384917 - type: dot_recall value: 81.2 - type: euclidean_accuracy value: 99.61980198019802 - type: euclidean_ap value: 86.3682771543572 - type: euclidean_f1 value: 80.35625927758537 - type: euclidean_precision value: 79.52987267384917 - type: euclidean_recall value: 81.2 - type: manhattan_accuracy value: 99.63564356435643 - type: manhattan_ap value: 87.12233265654545 - type: manhattan_f1 value: 80.78920041536864 - type: manhattan_precision value: 84.01727861771057 - type: manhattan_recall value: 77.8 - type: max_accuracy value: 99.63564356435643 - type: max_ap value: 87.12233265654545 - type: max_f1 value: 80.78920041536864 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 54.64344160961463 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 31.57666192425415 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.77545231337259 - type: cos_sim_spearman value: 29.420072483158698 - type: dot_pearson value: 29.775453888622426 - type: dot_spearman value: 29.420072483158698 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 68.98920000000001 - type: ap value: 12.803310864930856 - type: f1 value: 52.67881359079218 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 57.00622524052065 - type: f1 value: 57.2232294145327 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 38.23134611732841 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 82.25546879656673 - type: cos_sim_ap value: 60.64429023120581 - type: cos_sim_f1 value: 57.75789091788608 - type: cos_sim_precision value: 53.31547220361688 - type: cos_sim_recall value: 63.007915567282325 - type: dot_accuracy value: 82.25546879656673 - type: dot_ap value: 60.64428864700383 - type: dot_f1 value: 57.75789091788608 - type: dot_precision value: 53.31547220361688 - type: dot_recall value: 63.007915567282325 - type: euclidean_accuracy value: 82.25546879656673 - type: euclidean_ap value: 60.64429357965402 - type: euclidean_f1 value: 57.75789091788608 - type: euclidean_precision value: 53.31547220361688 - type: euclidean_recall value: 63.007915567282325 - type: manhattan_accuracy value: 82.14221851344102 - type: manhattan_ap value: 59.542389876094134 - type: manhattan_f1 value: 56.935892792466504 - type: manhattan_precision value: 52.48163810371689 - type: manhattan_recall value: 62.21635883905014 - type: max_accuracy value: 82.25546879656673 - type: max_ap value: 60.64429357965402 - type: max_f1 value: 57.75789091788608 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.99305312997244 - type: cos_sim_ap value: 81.6822772881566 - type: cos_sim_f1 value: 73.70381406436233 - type: cos_sim_precision value: 71.38528138528139 - type: cos_sim_recall value: 76.17801047120419 - type: dot_accuracy value: 86.99305312997244 - type: dot_ap value: 81.6822783032573 - type: dot_f1 value: 73.70381406436233 - type: dot_precision value: 71.38528138528139 - type: dot_recall value: 76.17801047120419 - type: euclidean_accuracy value: 86.99305312997244 - type: euclidean_ap value: 81.68228020882522 - type: euclidean_f1 value: 73.70381406436233 - type: euclidean_precision value: 71.38528138528139 - type: euclidean_recall value: 76.17801047120419 - type: manhattan_accuracy value: 86.84557767687352 - type: manhattan_ap value: 81.3912803407899 - type: manhattan_f1 value: 73.48302793631723 - type: manhattan_precision value: 71.71650542362944 - type: manhattan_recall value: 75.33877425315676 - type: max_accuracy value: 86.99305312997244 - type: max_ap value: 81.68228020882522 - type: max_f1 value: 73.70381406436233 --- This is a part of the [MTEB test](https://huggingface.co/spaces/mteb/leaderboard). ``` # !pip install tensorflow_text import tensorflow_hub as hub from tensorflow_text import SentencepieceTokenizer import tensorflow as tf embedder=hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3") class USE(): def encode(self, sentences, batch_size=32, **kwargs): embeddings = [] for i in range(0, len(sentences), batch_size): batch_sentences = sentences[i:i+batch_size] batch_embeddings = embedder(batch_sentences) embeddings.extend(batch_embeddings) return embeddings model = USE() ```