--- tags: - mteb model-index: - name: universal-sentence-encoder-multilingual-3 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 69.83582089552239 - type: ap value: 31.78315481798218 - type: f1 value: 63.49599891839609 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 65.24337500000001 - type: ap value: 60.210780218392365 - type: f1 value: 64.93158500771304 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 33.95400000000001 - type: f1 value: 33.54319450350246 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 33.721026148085606 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 23.989923856346987 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 80.07123979932489 - type: cos_sim_spearman value: 78.19395037690312 - type: euclidean_pearson value: 78.16919457797398 - type: euclidean_spearman value: 78.19395037690312 - type: manhattan_pearson value: 77.91224702148509 - type: manhattan_spearman value: 77.37284733016378 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 72.78571428571429 - type: f1 value: 71.7761168332973 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 30.883580770801693 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 21.053335896002615 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 35.6 - type: f1 value: 32.46907363797937 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 66.32400000000001 - type: ap value: 60.96534738097902 - type: f1 value: 66.17106527460737 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.40355677154584 - type: f1 value: 90.02197700114169 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 62.282261741906076 - type: f1 value: 42.66509438922704 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.11634162743779 - type: f1 value: 63.22561882532336 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.73570948217888 - type: f1 value: 72.60926811627525 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 28.682218411117113 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 24.249068423345125 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 43.81857444082751 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 58.37019068224756 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 80.40531780187507 - type: cos_sim_spearman value: 74.43055388885399 - type: euclidean_pearson value: 77.56731280002846 - type: euclidean_spearman value: 74.43055238430316 - type: manhattan_pearson value: 77.0225674793828 - type: manhattan_spearman value: 73.0157763009755 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 77.89513323602442 - type: cos_sim_spearman value: 72.57556877265816 - type: euclidean_pearson value: 73.85821376234655 - type: euclidean_spearman value: 72.57491371628555 - type: manhattan_pearson value: 74.09836169887191 - type: manhattan_spearman value: 72.68258315762111 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 70.35242787171663 - type: cos_sim_spearman value: 72.21957543640191 - type: euclidean_pearson value: 71.69509554469398 - type: euclidean_spearman value: 72.21957537220672 - type: manhattan_pearson value: 71.48837487133736 - type: manhattan_spearman value: 72.10777865383778 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 74.16772362444075 - type: cos_sim_spearman value: 69.97673740601287 - type: euclidean_pearson value: 72.31559291876557 - type: euclidean_spearman value: 69.97673740601287 - type: manhattan_pearson value: 72.24271795357289 - type: manhattan_spearman value: 69.49367729167946 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 81.79182911906513 - type: cos_sim_spearman value: 82.22437412512745 - type: euclidean_pearson value: 81.83097544031064 - type: euclidean_spearman value: 82.22436565654309 - type: manhattan_pearson value: 81.36464923871902 - type: manhattan_spearman value: 81.5343779056359 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 75.43557616859144 - type: cos_sim_spearman value: 76.91365659685123 - type: euclidean_pearson value: 76.56513219626397 - type: euclidean_spearman value: 76.91365659685123 - type: manhattan_pearson value: 76.17721999284116 - type: manhattan_spearman value: 76.35088101292793 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.94818288101212 - type: cos_sim_spearman value: 85.2167560886111 - type: euclidean_pearson value: 85.17622731729108 - type: euclidean_spearman value: 85.2167560886111 - type: manhattan_pearson value: 84.8324354792735 - type: manhattan_spearman value: 84.69897393431455 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 61.591839696719234 - type: cos_sim_spearman value: 61.90385583991066 - type: euclidean_pearson value: 63.49437829898753 - type: euclidean_spearman value: 61.90385583991066 - type: manhattan_pearson value: 60.78565195357755 - type: manhattan_spearman value: 59.802983782193905 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 81.37748727839765 - type: cos_sim_spearman value: 80.28214972273051 - type: euclidean_pearson value: 81.0274577938496 - type: euclidean_spearman value: 80.28214972273051 - type: manhattan_pearson value: 80.18978223617367 - type: manhattan_spearman value: 79.17781398461948 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.62475247524752 - type: cos_sim_ap value: 87.05032305596566 - type: cos_sim_f1 value: 80.25987006496752 - type: cos_sim_precision value: 80.21978021978022 - type: cos_sim_recall value: 80.30000000000001 - type: dot_accuracy value: 99.62475247524752 - type: dot_ap value: 87.05032305596568 - type: dot_f1 value: 80.25987006496752 - type: dot_precision value: 80.21978021978022 - type: dot_recall value: 80.30000000000001 - type: euclidean_accuracy value: 99.62475247524752 - type: euclidean_ap value: 87.05031186021066 - type: euclidean_f1 value: 80.25987006496752 - type: euclidean_precision value: 80.21978021978022 - type: euclidean_recall value: 80.30000000000001 - type: manhattan_accuracy value: 99.64554455445544 - type: manhattan_ap value: 87.773065204317 - type: manhattan_f1 value: 81.32094943240455 - type: manhattan_precision value: 84.00852878464818 - type: manhattan_recall value: 78.8 - type: max_accuracy value: 99.64554455445544 - type: max_ap value: 87.773065204317 - type: max_f1 value: 81.32094943240455 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 47.82768409586564 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.010238746581386 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.93460869020161 - type: cos_sim_spearman value: 30.793100826598852 - type: dot_pearson value: 30.934611387819803 - type: dot_spearman value: 30.793100826598852 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 67.56439999999999 - type: ap value: 12.622864890343005 - type: f1 value: 51.866745839430514 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 57.2354272778721 - type: f1 value: 57.42332031933637 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 37.46769271159515 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 81.53424330929249 - type: cos_sim_ap value: 57.033163698414114 - type: cos_sim_f1 value: 54.54983148772268 - type: cos_sim_precision value: 50.154935812306334 - type: cos_sim_recall value: 59.788918205804755 - type: dot_accuracy value: 81.53424330929249 - type: dot_ap value: 57.03315710343203 - type: dot_f1 value: 54.54983148772268 - type: dot_precision value: 50.154935812306334 - type: dot_recall value: 59.788918205804755 - type: euclidean_accuracy value: 81.53424330929249 - type: euclidean_ap value: 57.033158170117446 - type: euclidean_f1 value: 54.54983148772268 - type: euclidean_precision value: 50.154935812306334 - type: euclidean_recall value: 59.788918205804755 - type: manhattan_accuracy value: 81.29582166060678 - type: manhattan_ap value: 55.74973597316332 - type: manhattan_f1 value: 53.15203955500617 - type: manhattan_precision value: 50.0 - type: manhattan_recall value: 56.72823218997362 - type: max_accuracy value: 81.53424330929249 - type: max_ap value: 57.033163698414114 - type: max_f1 value: 54.54983148772268 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.27053983777701 - type: cos_sim_ap value: 82.20632443836952 - type: cos_sim_f1 value: 74.4764795144158 - type: cos_sim_precision value: 73.40711935387377 - type: cos_sim_recall value: 75.57745611333539 - type: dot_accuracy value: 87.27053983777701 - type: dot_ap value: 82.20632570091198 - type: dot_f1 value: 74.4764795144158 - type: dot_precision value: 73.40711935387377 - type: dot_recall value: 75.57745611333539 - type: euclidean_accuracy value: 87.27053983777701 - type: euclidean_ap value: 82.20632379487282 - type: euclidean_f1 value: 74.4764795144158 - type: euclidean_precision value: 73.40711935387377 - type: euclidean_recall value: 75.57745611333539 - type: manhattan_accuracy value: 87.18321884581053 - type: manhattan_ap value: 81.95324384723243 - type: manhattan_f1 value: 74.28318388132404 - type: manhattan_precision value: 71.32733328608887 - type: manhattan_recall value: 77.49461040960887 - type: max_accuracy value: 87.27053983777701 - type: max_ap value: 82.20632570091198 - type: max_f1 value: 74.4764795144158 --- This is a part of the [MTEB test](https://huggingface.co/spaces/mteb/leaderboard). ``` # !pip install tensorflow_text import tensorflow_hub as hub from tensorflow_text import SentencepieceTokenizer import tensorflow as tf embedder=hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3") class USE(): def encode(self, sentences, batch_size=32, **kwargs): embeddings = [] for i in range(0, len(sentences), batch_size): batch_sentences = sentences[i:i+batch_size] batch_embeddings = embedder(batch_sentences) embeddings.extend(batch_embeddings) return embeddings model = USE() ```