--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2438 - loss:MatryoshkaLoss - loss:OnlineContrastiveLoss base_model: Alibaba-NLP/gte-modernbert-base pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base results: - task: type: my-binary-classification name: My Binary Classification dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.9159836065573771 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8090976476669312 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9216061185468452 name: Cosine F1 - type: cosine_f1_threshold value: 0.8090976476669312 name: Cosine F1 Threshold - type: cosine_precision value: 0.9305019305019305 name: Cosine Precision - type: cosine_recall value: 0.9128787878787878 name: Cosine Recall - type: cosine_ap value: 0.974188222191262 name: Cosine Ap - type: cosine_mcc value: 0.8312925398469787 name: Cosine Mcc --- # SentenceTransformer based on Alibaba-NLP/gte-modernbert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("waris-gill/ModernBert-Medical-v1") # Run inference sentences = [ 'My rheumatologist said \'if a patient has lupus then prednisone doesn\'t work." why is that?', "I have lupus,my rheumatologist told me that prednisone doesn't work in my case. Could you educate me why? What are my chances? ", 'Hello doctor, my grandmother has 3rd degree bed sore. What can be done to help?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### My Binary Classification * Evaluated with scache.train.MyBinaryClassificationEvaluator | Metric | Value | |:--------------------------|:-----------| | cosine_accuracy | 0.916 | | cosine_accuracy_threshold | 0.8091 | | cosine_f1 | 0.9216 | | cosine_f1_threshold | 0.8091 | | cosine_precision | 0.9305 | | cosine_recall | 0.9129 | | **cosine_ap** | **0.9742** | | cosine_mcc | 0.8313 | ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 2,438 training samples * Columns: question_1, question_2, and label * Approximate statistics based on the first 1000 samples: * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "OnlineContrastiveLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### csv * Dataset: csv * Size: 2,438 evaluation samples ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 256 - `learning_rate`: 6.5383156211679e-05 - `max_grad_norm`: 0.5 - `num_train_epochs`: 1 - `lr_scheduler_type`: constant - `load_best_model_at_end`: True - `torch_compile`: True - `torch_compile_backend`: inductor - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 6.5383156211679e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 0.5 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: constant - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: True - `torch_compile_backend`: inductor - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_ap | |:----------:|:------:|:-------------:|:---------------:|:----------:| | 0.0323 | 1 | 4.4977 | - | - | | 0.0645 | 2 | 4.9952 | - | - | | 0.0968 | 3 | 2.9984 | - | - | | 0.1290 | 4 | 4.8052 | - | - | | 0.1613 | 5 | 4.0031 | - | - | | 0.1935 | 6 | 3.7682 | - | - | | 0.2258 | 7 | 4.0361 | - | - | | 0.2581 | 8 | 3.4003 | - | - | | 0.2903 | 9 | 1.1674 | - | - | | **0.3226** | **10** | **2.3826** | **14.3756** | **0.9742** | | 0.3548 | 11 | 3.8777 | - | - | | 0.3871 | 12 | 2.6367 | - | - | | 0.4194 | 13 | 2.5763 | - | - | | 0.4516 | 14 | 3.5591 | - | - | | 0.4839 | 15 | 2.3568 | - | - | | 0.5161 | 16 | 2.9432 | - | - | | 0.5484 | 17 | 2.746 | - | - | | 0.5806 | 18 | 3.647 | - | - | | 0.6129 | 19 | 3.0907 | - | - | | 0.6452 | 20 | 3.9776 | 12.4766 | 0.9771 | | 0.6774 | 21 | 3.4131 | - | - | | 0.7097 | 22 | 3.0084 | - | - | | 0.7419 | 23 | 2.7182 | - | - | | 0.7742 | 24 | 1.5211 | - | - | | 0.8065 | 25 | 1.8332 | - | - | | 0.8387 | 26 | 3.4883 | - | - | | 0.8710 | 27 | 2.0585 | - | - | | 0.9032 | 28 | 2.775 | - | - | | 0.9355 | 29 | 2.9137 | - | - | | 0.9677 | 30 | 2.4238 | 12.4805 | 0.9769 | | 1.0 | 31 | 1.2115 | 14.3756 | 0.9742 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.5.1+cu124 - Accelerate: 1.4.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```