File size: 1,037 Bytes
ebdc108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---
license: mit
language:
- en
---
# Evolla

<a href="https://doi.org/10.1101/2025.01.05.630192"><img src="https://img.shields.io/badge/Paper-bioRxiv-green" style="max-width: 100%;"></a>
<a href="https://x.com/duguyuan/status/1876446845951492221"><img src="https://img.shields.io/badge/Post-X-black" style="max-width: 100%;"></a>

A frontier protein-language generative model designed to decode the molecular language of proteins.

## Comparative analysis

In our paper, we conducted a comparative analysis against two state-of-the-art general-purpose language models: *Deepseek-v3* and *gpt-4o-2024-11-20*. 

| **Model**               | **Mean GPT score (± 95% confidence interval)** |
|-------------------------|-----------------------------|
| *Evolla*                | 74.10 ± 0.81                |
| *Deepseek-v3*           | 40.49 ± 0.56                |
| *gpt-4o-2024-11-20*     | 37.07 ± 0.54                |


<img src="https://cdn-uploads.huggingface.co/production/uploads/643bb8ba6eeb746f5ad0a2db/k3WaRvNm_FDcF1ITWMQE6.