whyoke/segmentation_model_50ep
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segmentation_model_50ep
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segmentation_model_50ep
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0063
|
20 |
+
- Mean Iou: 0.9981
|
21 |
+
- Mean Accuracy: 1.0
|
22 |
+
- Overall Accuracy: 1.0
|
23 |
+
- Per Category Iou: [0.9980539089681099]
|
24 |
+
- Per Category Accuracy: [1.0]
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 6e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:---------------------:|
|
55 |
+
| 0.049 | 1.2195 | 100 | 0.0429 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
56 |
+
| 0.029 | 2.4390 | 200 | 0.0274 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
57 |
+
| 0.0171 | 3.6585 | 300 | 0.0192 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
58 |
+
| 0.0158 | 4.8780 | 400 | 0.0187 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
59 |
+
| 0.019 | 6.0976 | 500 | 0.0169 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
60 |
+
| 0.013 | 7.3171 | 600 | 0.0125 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
61 |
+
| 0.0131 | 8.5366 | 700 | 0.0124 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
62 |
+
| 0.0111 | 9.7561 | 800 | 0.0101 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
63 |
+
| 0.0089 | 10.9756 | 900 | 0.0102 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
64 |
+
| 0.0106 | 12.1951 | 1000 | 0.0088 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
65 |
+
| 0.0093 | 13.4146 | 1100 | 0.0084 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
66 |
+
| 0.0088 | 14.6341 | 1200 | 0.0079 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
67 |
+
| 0.0084 | 15.8537 | 1300 | 0.0080 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
68 |
+
| 0.0089 | 17.0732 | 1400 | 0.0077 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
69 |
+
| 0.0087 | 18.2927 | 1500 | 0.0069 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
70 |
+
| 0.0072 | 19.5122 | 1600 | 0.0075 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
71 |
+
| 0.0087 | 20.7317 | 1700 | 0.0068 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
72 |
+
| 0.0094 | 21.9512 | 1800 | 0.0070 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
73 |
+
| 0.0074 | 23.1707 | 1900 | 0.0070 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
74 |
+
| 0.0075 | 24.3902 | 2000 | 0.0069 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
75 |
+
| 0.007 | 25.6098 | 2100 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
76 |
+
| 0.0053 | 26.8293 | 2200 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
77 |
+
| 0.0072 | 28.0488 | 2300 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
78 |
+
| 0.0082 | 29.2683 | 2400 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
79 |
+
| 0.0065 | 30.4878 | 2500 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
80 |
+
| 0.0054 | 31.7073 | 2600 | 0.0065 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
81 |
+
| 0.0079 | 32.9268 | 2700 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
82 |
+
| 0.006 | 34.1463 | 2800 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
83 |
+
| 0.0053 | 35.3659 | 2900 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
84 |
+
| 0.0059 | 36.5854 | 3000 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
85 |
+
| 0.0061 | 37.8049 | 3100 | 0.0066 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
86 |
+
| 0.007 | 39.0244 | 3200 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
87 |
+
| 0.0058 | 40.2439 | 3300 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
88 |
+
| 0.0055 | 41.4634 | 3400 | 0.0062 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
89 |
+
| 0.0068 | 42.6829 | 3500 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
90 |
+
| 0.0058 | 43.9024 | 3600 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
91 |
+
| 0.0061 | 45.1220 | 3700 | 0.0064 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
92 |
+
| 0.003 | 46.3415 | 3800 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
93 |
+
| 0.0058 | 47.5610 | 3900 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
94 |
+
| 0.0087 | 48.7805 | 4000 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
95 |
+
| 0.006 | 50.0 | 4100 | 0.0063 | 0.9981 | 1.0 | 1.0 | [0.9980539089681099] | [1.0] |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.46.3
|
101 |
+
- Pytorch 2.2.0
|
102 |
+
- Datasets 2.4.0
|
103 |
+
- Tokenizers 0.20.3
|