--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - generated_from_trainer - axolotl datasets: - winglian/codeforces-cot-16k-context-topk64-prepared model-index: - name: outputs/out-kd-7b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: Qwen/Qwen2.5-Coder-7B-Instruct plugins: - axolotl.integrations.kd.KDPlugin - axolotl.integrations.liger.LigerPlugin liger_rms_norm: true liger_glu_activation: true # torch_compile: true strict: false chat_template_jinja: "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{\\\"name\\\": , \\\"arguments\\\": }\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- message.content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n" kd_trainer: true kd_ce_alpha: 0.2 kd_alpha: 0.8 kd_temperature: 1.0 # kd_zscore_base_temp: 1.0 kd_top_k_before_softmax: true dataloader_prefetch_factor: 256 dataloader_num_workers: 4 dataloader_pin_memory: true gc_steps: -1 # gc at the end of each epoch datasets: - field_messages: messages message_field_content: content message_field_role: role logprobs_field: llm_text_generation_vllm_logprobs path: winglian/codeforces-cot-16k-context-topk64-prepared name: solutions_decontaminated type: axolotl.integrations.kd.chat_template split: train temperature: 1.0 dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out-kd-7b skip_prepare_dataset: true sequence_len: 16384 sample_packing: true pad_to_sequence_len: true wandb_project: kd-7b-codeforces wandb_entity: axolotl-ai wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 10 optimizer: adamw_torch_fused lr_scheduler: rex learning_rate: 4e-5 save_safetensors: true train_on_inputs: false group_by_length: false bf16: true fp16: tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 280 evals_per_epoch: eval_table_size: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.0 special_tokens: pad_token: <|endoftext|> ```

# outputs/out-kd-7b This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the winglian/codeforces-cot-16k-context-topk64-prepared dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: rex - lr_scheduler_warmup_steps: 280 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0