File size: 2,981 Bytes
4f486d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-1.7B-Base
tags:
- generated_from_trainer
datasets:
- winglian/OpenThoughts-114k-math-correct
model-index:
- name: outputs/out-1.7b-sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
base_model: Qwen/Qwen3-1.7B-Base
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rms_norm: true
liger_glu_activation: true
# torch_compile: true
strict: false
dataloader_prefetch_factor: 1
dataloader_num_workers: 2
dataloader_pin_memory: true
gc_steps: -1 # gc at the end of each epoch
chat_template: qwen3
datasets:
- path: winglian/OpenThoughts-114k-math-correct
type: chat_template
split: train
split_thinking: true
eot_tokens:
- "<|im_end|>"
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out-1.7b-sft
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: kd-4b-math
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_torch_fused
adam_beta2: 0.999
lr_scheduler: rex
learning_rate: 3e-5
max_grad_norm: 0.2
save_safetensors: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 2
debug:
weight_decay: 0.0
special_tokens:
eos_token: <|im_end|>
deepspeed: deepspeed_configs/zero2_torch_compile.json
```
</details><br>
# outputs/out-1.7b-sft
This model is a fine-tuned version of [Qwen/Qwen3-1.7B-Base](https://huggingface.co/Qwen/Qwen3-1.7B-Base) on the winglian/OpenThoughts-114k-math-correct dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
|