--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-4B-Base tags: - generated_from_trainer datasets: - winglian/OpenThoughts-114k-math-correct-qwen3-14b-math-prepared-temp1 model-index: - name: outputs/out-kd-4b-offline-t1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: Qwen/Qwen3-4B-Base # base_model: winglian/qwen3-14b-math plugins: - axolotl.integrations.kd.KDPlugin - axolotl.integrations.liger.LigerPlugin liger_rms_norm: true liger_glu_activation: true # torch_compile: true strict: false kd_trainer: true kd_ce_alpha: 0.1 kd_alpha: 1.0 kd_temperature: 1.0 kd_beta: 0.5 kd_normalize_topk: false dataloader_prefetch_factor: 1 dataloader_num_workers: 2 dataloader_pin_memory: true gc_steps: -1 # gc at the end of each epoch chat_template: qwen3 datasets: - path: winglian/OpenThoughts-114k-math-correct-qwen3-14b-math-prepared-temp1 type: chat_template split: train split_thinking: true eot_tokens: - "<|im_end|>" skip_prepare_dataset: true dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out-kd-4b-offline-t1 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: kd-4b-math wandb_entity: axolotl-ai wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_torch_fused adam_beta2: 0.95 lr_scheduler: rex learning_rate: 3e-5 max_grad_norm: 0.2 save_safetensors: true bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false logging_steps: 1 flash_attention: true warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 2 debug: weight_decay: 0.0 special_tokens: eos_token: <|im_end|> deepspeed: deepspeed_configs/zero2_torch_compile.json ```

# outputs/out-kd-4b-offline-t1 This model is a fine-tuned version of [Qwen/Qwen3-4B-Base](https://huggingface.co/Qwen/Qwen3-4B-Base) on the winglian/OpenThoughts-114k-math-correct-qwen3-14b-math-prepared-temp1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.1 - Tokenizers 0.21.1