--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-70B tags: - generated_from_trainer datasets: - bespokelabs/Bespoke-Stratos-17k model-index: - name: outputs/out/reasoning-70b-stratos results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: meta-llama/Llama-3.1-70B # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name # plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.spectrum.SpectrumPlugin spectrum_top_fraction: 0.5 spectrum_model_name: meta-llama/Meta-Llama-3.1-70B liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true strict: false chat_template: llama3 datasets: - path: bespokelabs/Bespoke-Stratos-17k field_messages: conversations message_property_mappings: content: value role: from split: train type: chat_template dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out/reasoning-70b-stratos save_safetensors: true wandb_project: reasoning-70b-stratos wandb_entity: axolotl-ai wandb_watch: wandb_name: wandb_log_model: sequence_len: 16384 sample_packing: true pad_to_sequence_len: true gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: rex learning_rate: 5.0e-6 embedding_lr: 1.0e-5 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.01 deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> added_tokens_overrides: 128011: 128012: 128013: <|begin_of_thought|> 128014: <|end_of_thought|> 128015: <|begin_of_solution|> 128016: <|end_of_solution|> fix_untrained_tokens: - 128011 - 128012 - 128013 - 128014 - 128015 - 128016 ```

# outputs/out/reasoning-70b-stratos This model is a fine-tuned version of [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) on the bespokelabs/Bespoke-Stratos-17k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: rex - lr_scheduler_warmup_steps: 20 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0