File size: 3,541 Bytes
d5c1d77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-70B
tags:
- generated_from_trainer
- axolotl
datasets:
- bespokelabs/Bespoke-Stratos-17k
model-index:
- name: outputs/out/reasoning-70b-stratos
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0.dev0`
```yaml
base_model: meta-llama/Llama-3.1-70B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
#

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.spectrum.SpectrumPlugin
spectrum_top_fraction: 0.5
spectrum_model_name: meta-llama/Meta-Llama-3.1-70B
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

strict: false

chat_template: llama3
datasets:
  - path: bespokelabs/Bespoke-Stratos-17k
    field_messages: conversations
    message_property_mappings:
      content: value
      role: from
    split: train
    type: chat_template
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out/reasoning-70b-stratos
save_safetensors: true

wandb_project: reasoning-70b-stratos
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: rex
learning_rate: 2.0e-6
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 2
weight_decay: 0.01
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot_id|>
added_tokens_overrides:
  128011: <think>
  128012: </think>
  128013: <|begin_of_thought|>
  128014: <|end_of_thought|>
  128015: <|begin_of_solution|>
  128016: <|end_of_solution|>
fix_untrained_tokens:
  - 128011
  - 128012
  - 128013
  - 128014
  - 128015
  - 128016


```

</details><br>

# outputs/out/reasoning-70b-stratos

This model is a fine-tuned version of [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) on the bespokelabs/Bespoke-Stratos-17k dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: rex
- lr_scheduler_warmup_steps: 20
- num_epochs: 3.0

### Training results



### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0