File size: 3,589 Bytes
a662262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
tags:
- generated_from_trainer
datasets:
- bespokelabs/Bespoke-Stratos-17k
model-index:
- name: outputs/out/reasoning-8b-stratos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0.dev0`
```yaml
base_model: meta-llama/Llama-3.1-8B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
#
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.spectrum.SpectrumPlugin
spectrum_top_fraction: 0.5
spectrum_model_name: meta-llama/Meta-Llama-3.1-8B
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: llama3
datasets:
- path: bespokelabs/Bespoke-Stratos-17k
field_messages: conversations
message_property_mappings:
content: value
role: from
split: train
type: chat_template
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out/reasoning-8b-stratos
save_safetensors: true
wandb_project: reasoning-8b-stratos
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: rex
learning_rate: 2.0e-7
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
tf32: true
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 2
weight_decay: 0.01
# deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json
deepspeed: deepspeed_configs/zero2.json
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
added_tokens_overrides:
128011: <think>
128012: </think>
128013: <|begin_of_thought|>
128014: <|end_of_thought|>
128015: <|begin_of_solution|>
128016: <|end_of_solution|>
fix_untrained_tokens:
- 128011
- 128012
- 128013
- 128014
- 128015
- 128016
```
</details><br>
# outputs/out/reasoning-8b-stratos
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the bespokelabs/Bespoke-Stratos-17k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- max_seq_length: 16384
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: rex
- lr_scheduler_warmup_steps: 20
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|