--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4517 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.3017 | 1.0 | 113 | 0.6180 | 0.78 | | 0.5478 | 2.0 | 226 | 0.8031 | 0.77 | | 0.3357 | 3.0 | 339 | 0.6511 | 0.87 | | 0.1565 | 4.0 | 452 | 0.6858 | 0.87 | | 0.0628 | 5.0 | 565 | 0.5638 | 0.86 | | 0.0466 | 6.0 | 678 | 0.4399 | 0.91 | | 0.0108 | 7.0 | 791 | 0.5120 | 0.88 | | 0.0094 | 8.0 | 904 | 0.4854 | 0.89 | | 0.0069 | 9.0 | 1017 | 0.4865 | 0.91 | | 0.0061 | 10.0 | 1130 | 0.4674 | 0.91 | | 0.0052 | 11.0 | 1243 | 0.4565 | 0.91 | | 0.0027 | 12.0 | 1356 | 0.4557 | 0.91 | | 0.0042 | 13.0 | 1469 | 0.4534 | 0.91 | | 0.0028 | 14.0 | 1582 | 0.4523 | 0.91 | | 0.0026 | 14.8711 | 1680 | 0.4517 | 0.91 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0