wubingheng commited on
Commit
8e14ffe
·
verified ·
1 Parent(s): 05a0f2f

Upload DogeForCausalLM

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +10 -1
  3. configuration_doge.py +228 -0
  4. generation_config.json +7 -0
  5. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json CHANGED
@@ -1,11 +1,17 @@
1
  {
 
2
  "architectures": [
3
  "DogeForCausalLM"
4
  ],
5
  "attention_dropout": 0.0,
 
 
 
 
6
  "bos_token_id": 0,
7
  "dynamic_mask_ratio": 0.0,
8
  "eos_token_id": 1,
 
9
  "hidden_act": "silu",
10
  "hidden_bias": false,
11
  "hidden_dropout": 0.0,
@@ -17,6 +23,9 @@
17
  "max_position_embeddings": 2048,
18
  "model_type": "doge",
19
  "num_attention_heads": 2,
 
 
 
20
  "num_experts": 16384,
21
  "num_experts_per_tok": 64,
22
  "num_hidden_layers": 8,
@@ -31,7 +40,7 @@
31
  "rope_theta": 10000.0,
32
  "tie_word_embeddings": true,
33
  "torch_dtype": "float32",
34
- "transformers_version": "4.51.2",
35
  "use_cache": true,
36
  "vocab_size": 32768
37
  }
 
1
  {
2
+ "_name_or_path": "A:\\PyTorch_WorkSpace\\wubingheng\\small-doge\\small-doge\\data\\Doge-20M-Chinese\\checkpoint-4800",
3
  "architectures": [
4
  "DogeForCausalLM"
5
  ],
6
  "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_doge.DogeConfig",
9
+ "AutoModelForCausalLM": "SmallDoge/Doge-20M-checkpoint--modeling_doge.DogeForCausalLM"
10
+ },
11
  "bos_token_id": 0,
12
  "dynamic_mask_ratio": 0.0,
13
  "eos_token_id": 1,
14
+ "expert_retrieval_size": 256,
15
  "hidden_act": "silu",
16
  "hidden_bias": false,
17
  "hidden_dropout": 0.0,
 
23
  "max_position_embeddings": 2048,
24
  "model_type": "doge",
25
  "num_attention_heads": 2,
26
+ "num_cdmoe_experts": 16348,
27
+ "num_cdmoe_experts_per_head": 8,
28
+ "num_cdmoe_heads": 4,
29
  "num_experts": 16384,
30
  "num_experts_per_tok": 64,
31
  "num_hidden_layers": 8,
 
40
  "rope_theta": 10000.0,
41
  "tie_word_embeddings": true,
42
  "torch_dtype": "float32",
43
+ "transformers_version": "4.48.1",
44
  "use_cache": true,
45
  "vocab_size": 32768
46
  }
configuration_doge.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/doge/modular_doge.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_doge.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ # This code is based on the Wonderful Matrices paper implementation.
11
+ # The Doge family of small language models is trained by Jingze Shi.
12
+ #
13
+ # Licensed under the Apache License, Version 2.0 (the "License");
14
+ # you may not use this file except in compliance with the License.
15
+ # You may obtain a copy of the License at
16
+ #
17
+ # http://www.apache.org/licenses/LICENSE-2.0
18
+ #
19
+ # Unless required by applicable law or agreed to in writing, software
20
+ # distributed under the License is distributed on an "AS IS" BASIS,
21
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
+ # See the License for the specific language governing permissions and
23
+ # limitations under the License.
24
+ from transformers.configuration_utils import PretrainedConfig
25
+ from transformers.modeling_rope_utils import rope_config_validation
26
+
27
+
28
+ class DogeConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
31
+ model according to the specified arguments, defining the model architecture like [SmallDoge/Doge-20M](https://huggingface.co/SmallDoge/Doge-20M).
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32768):
38
+ Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
39
+ hidden_size (`int`, *optional*, defaults to 1024):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 2048):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer decoder.
45
+ hidden_bias (`bool`, *optional*, defaults to `False`):
46
+ Whether to use bias in the hidden layers.
47
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
48
+ Dropout probability for each sequence transformation and state transformation module.
49
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
50
+ The non-linear activation function (function or string) in the decoder.
51
+ initializer_range (`float`, *optional*, defaults to 0.02):
52
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
53
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
54
+ The epsilon used by the rms normalization layers.
55
+ use_cache (`bool`, *optional*, defaults to `True`):
56
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
57
+ relevant if `config.is_decoder=True`.
58
+ bos_token_id (`int`, *optional*, defaults to 0):
59
+ Beginning of stream token id.
60
+ eos_token_id (`int`, *optional*, defaults to 1):
61
+ End of stream token id.
62
+ pad_token_id (`int`, *optional*, defaults to 2):
63
+ Padding token id.
64
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
67
+ The maximum sequence length that this model might ever be used with.
68
+ rope_theta (`float`, *optional*, defaults to 10000.0):
69
+ The base period of the RoPE embeddings.
70
+ rope_scaling (`Dict`, *optional*):
71
+ Dictionary containing the scaling configuration for the RoPE embeddings.
72
+ NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
73
+ Doge family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.
74
+ Expected contents:
75
+ `rope_type` (`str`):
76
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
77
+ `factor` (`float`, *optional*):
78
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
79
+ In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
80
+ `original_max_position_embeddings` (`int`, *optional*):
81
+ Used with 'dynamic', 'longrope' and 'llama3'.
82
+ The original max position embeddings used during pretraining.
83
+ `attention_factor` (`float`, *optional*):
84
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
85
+ computation.
86
+ If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
87
+ `beta_fast` (`float`, *optional*):
88
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
89
+ ramp function. If unspecified, it defaults to 32.
90
+ `beta_slow` (`float`, *optional*):
91
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
92
+ ramp function. If unspecified, it defaults to 1.
93
+ `short_factor` (`List[float]`, *optional*):
94
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
95
+ Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
96
+ `long_factor` (`List[float]`, *optional*):
97
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
98
+ Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
99
+ `low_freq_factor` (`float`, *optional*):
100
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
101
+ `high_freq_factor` (`float`, *optional*):
102
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
103
+ num_attention_heads (`int`, *optional*, defaults to 8):
104
+ Number of attention heads for each attention layer in the Transformer decoder.
105
+ num_key_value_heads (`int`, *optional*):
106
+ This is the number of key_value heads that should be used to implement Grouped Query Attention.
107
+ If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
108
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
109
+ When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
110
+ For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
111
+ If it is not specified, will default to `num_attention_heads`.
112
+ attention_dropout (`float`, *optional*, defaults to 0.0):
113
+ The dropout ratio for the attention probabilities.
114
+ dynamic_mask_ratio (`float`, *optional*, defaults to 0.0):
115
+ The ratio to control the proportion of the dynamic mask filled with the minimum value. For more details checkout [this paper](https://arxiv.org/pdf/2412.11834).
116
+ is_moe (`bool`, *optional*, defaults to `False`):
117
+ Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize. For more details checkout [this paper](https://arxiv.org/pdf/2412.11834).
118
+ num_cdmoe_experts (`int`, *optional*, defaults to 16348):
119
+ Number of Experts for the Cross Domain Mixture of Experts.
120
+ num_cdmoe_heads (`int`, *optional*, defaults to 4):
121
+ Number of retrieval heads, used to mix multi-head experts.
122
+ num_cdmoe_experts_per_head (`int`, *optional*, defaults to 8):
123
+ Number of Experts per retrieval head, used to mix multi-head experts.
124
+ expert_retrieval_size (`int`, *optional*, defaults to 64):
125
+ Dimension of the Expert retrieval states for calculating the dot product of query and key to determine the expert index.
126
+
127
+ ```python
128
+ >>> from transformers import DogeConfig, DogeModel
129
+
130
+ >>> # Initializing a Doge-320M style configuration
131
+ >>> configuration = DogeConfig()
132
+
133
+ >>> # Initializing a model from the Doge-320M style configuration
134
+ >>> model = DogeModel(configuration)
135
+
136
+ >>> # Accessing the model configuration
137
+ >>> configuration = model.config
138
+ ```"""
139
+
140
+ model_type = "doge"
141
+ keys_to_ignore_at_inference = ["past_key_values"]
142
+ # Default tensor parallel plan for base model `DogeModel`
143
+ base_model_tp_plan = {
144
+ "layers.*.self_attn.q_proj": "colwise",
145
+ "layers.*.self_attn.k_proj": "colwise",
146
+ "layers.*.self_attn.v_proj": "colwise",
147
+ "layers.*.self_attn.dt_proj": "rowwise",
148
+ "layers.*.self_attn.o_proj": "rowwise",
149
+ "layers.*.mlp.gate_proj": "colwise",
150
+ "layers.*.mlp.up_proj": "colwise",
151
+ "layers.*.mlp.down_proj": "rowwise",
152
+ }
153
+
154
+ def __init__(
155
+ self,
156
+ vocab_size=32768,
157
+ hidden_size=1024,
158
+ intermediate_size=2048,
159
+ num_hidden_layers=32,
160
+ hidden_bias=False,
161
+ hidden_dropout=0.0,
162
+ hidden_act="silu",
163
+ initializer_range=0.02,
164
+ rms_norm_eps=1e-06,
165
+ use_cache=True,
166
+ bos_token_id=0,
167
+ eos_token_id=1,
168
+ pad_token_id=2,
169
+ tie_word_embeddings=False,
170
+ max_position_embeddings=2048,
171
+ rope_theta=10000.0,
172
+ rope_scaling=None,
173
+ num_attention_heads=8,
174
+ num_key_value_heads=None,
175
+ attention_dropout=0.0,
176
+ dynamic_mask_ratio=0.0,
177
+ is_moe=False,
178
+ num_cdmoe_experts=16348,
179
+ num_cdmoe_heads=4,
180
+ num_cdmoe_experts_per_head=8,
181
+ expert_retrieval_size=64,
182
+ **kwargs,
183
+ ):
184
+ self.vocab_size = vocab_size
185
+ self.hidden_size = hidden_size
186
+ self.intermediate_size = intermediate_size
187
+ self.num_hidden_layers = num_hidden_layers
188
+
189
+ self.hidden_bias = hidden_bias
190
+ self.hidden_dropout = hidden_dropout
191
+ self.hidden_act = hidden_act
192
+ self.initializer_range = initializer_range
193
+ self.rms_norm_eps = rms_norm_eps
194
+ self.use_cache = use_cache
195
+
196
+ self.max_position_embeddings = max_position_embeddings
197
+ self.rope_theta = rope_theta
198
+ self.rope_scaling = rope_scaling
199
+ self.num_attention_heads = num_attention_heads
200
+ self.num_key_value_heads = num_key_value_heads
201
+ self.attention_dropout = attention_dropout
202
+ self.dynamic_mask_ratio = dynamic_mask_ratio
203
+ self.is_moe = is_moe
204
+ self.num_cdmoe_experts = num_cdmoe_experts
205
+ self.num_cdmoe_heads = num_cdmoe_heads
206
+ self.num_cdmoe_experts_per_head = num_cdmoe_experts_per_head
207
+ self.expert_retrieval_size = expert_retrieval_size
208
+
209
+ # Validate the correctness of rotary position embeddings parameters
210
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
211
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
212
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
213
+ rope_config_validation(self)
214
+
215
+ # for backward compatibility
216
+ if num_key_value_heads is None:
217
+ self.num_key_value_heads = num_attention_heads
218
+
219
+ super().__init__(
220
+ bos_token_id=bos_token_id,
221
+ eos_token_id=eos_token_id,
222
+ pad_token_id=pad_token_id,
223
+ tie_word_embeddings=tie_word_embeddings,
224
+ **kwargs,
225
+ )
226
+
227
+
228
+ __all__ = ["DogeConfig"]
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.48.1"
7
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:442c6f629b5a59441757fd9c95b4d8ea7aafb041fd49b844eb293cba8da75f73
3
  size 52482152
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15fbe2f9cf091bfb4f7f27898ec801ecf70e82f86d75c7b92327ccfcab4e74f1
3
  size 52482152