{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d3f6643c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d3f6643c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d3f6643c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d3f6643c700>", "_build": "<function ActorCriticPolicy._build at 0x7d3f6643c790>", "forward": "<function ActorCriticPolicy.forward at 0x7d3f6643c820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d3f6643c8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d3f6643c940>", "_predict": "<function ActorCriticPolicy._predict at 0x7d3f6643c9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d3f6643ca60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d3f6643caf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d3f6643cb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3f66431cc0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690349064326762350, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPyb7613sQ+Mx8yPi8QAb8srCe+A7sQPgAAAAAAAAAABuo8PjT+4D72Q7K+S973viVE7jyz5zO+AAAAAAAAAAAdLZO+mEnYPiokgD5TLdC+BastviYOQT4AAAAAAAAAAE3xFb2UxKo/iU0Wv6uAIr9NUFc8ghltvQAAAAAAAAAAzUIPPUkYHz6k38C7tIDXvg/yND2ldqM8AAAAAAAAAAATwT8+xPWSPqLzpb4Vj+y+d9w1PVU/I74AAAAAAAAAABovBj7ZcGM+QHaAvjnGo75Pw3K9cwUhvQAAAAAAAAAAmuliPHKitj8p9ag+XpgMPm7XObtOC149AAAAAAAAAABml+K8omVOPw85Qr2OwCy/SIxvvYBNVD0AAAAAAAAAADOyxrwpqDu6dLCRMxBbdi8fPDy7pnW6swAAgD8AAIA/GlJAvYqCfDwOLyE+BLAHvgN60T0IeBE9AAAAAAAAAABA2vA959jDPv5zSL4NJdy+VkpUuz8TrL0AAAAAAAAAAI1hTD5xYJA/bzGDPpZu1b6KtrQ+sLv+PQAAAAAAAAAAGrbfvQWj1zwShjM+ipuRvpvgtTxps6M8AAAAAAAAAAAaUIW9UhDoudMr3jpA94+148g+uoqLAroAAAAAAACAPwDJkz0zOrw+PJOyvbsjAr9NYDM9qkKIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJRF5GBnSSMAWyUS6+MAXSUR0CZLG/Tb349dX2UKGgGR0Bv1ej/MnqnaAdLsWgIR0CZLKJQ+EAYdX2UKGgGR0BxvaVD8cdYaAdLsWgIR0CZLOwxnFo+dX2UKGgGR0BwKjVDrqt6aAdLrmgIR0CZLaKYRdyDdX2UKGgGR0ByFgCaJAMVaAdL4GgIR0CZLifhMrVfdX2UKGgGR0Bk555AyEcsaAdN6ANoCEdAmS61TefqYHV9lChoBkdAbymcmShakmgHS8BoCEdAmS7wf+0gKXV9lChoBkdAcXzny/bj+GgHS9ZoCEdAmS+B95QgtHV9lChoBkdAccaGaQV9GGgHS9xoCEdAmS/6ZtvXLHV9lChoBkdAcczkD6nBL2gHS7BoCEdAmTAGJaaCtnV9lChoBkdAch0pnYg7o2gHS7xoCEdAmTChUFSsKnV9lChoBkdAcD6Li++M62gHS8BoCEdAmTEGhVU+93V9lChoBkdAcWDtz0Yj0WgHS+ZoCEdAmTF4GhVU/HV9lChoBkdAcbDwtrbg0mgHS9NoCEdAmTIycPOIInV9lChoBkdAcnfmPo3aSWgHS+FoCEdAmTMFRLsa9HV9lChoBkdAcWs+GGmDUWgHS+FoCEdAmTOvU4JeFHV9lChoBkdAceNrFwT/Q2gHS9FoCEdAmTSExh2GI3V9lChoBkdAYMuFBY3eemgHTegDaAhHQJk0qFrVOKx1fZQoaAZHQHFcQeq7yx1oB0v2aAhHQJk1R8a4tpV1fZQoaAZHQHKoZGe+VTtoB0vdaAhHQJk1jkFOful1fZQoaAZHQHPo2LLpzLhoB01AAWgIR0CZNl/0dzXCdX2UKGgGR0ByER2MbWEsaAdLymgIR0CZNm2sq8UVdX2UKGgGR0ByXD6VMVUNaAdLu2gIR0CZNqmNzbN9dX2UKGgGR0Bw12MwUQCkaAdL+2gIR0CZNr40uUUxdX2UKGgGR0By9SHLzPKMaAdNTgFoCEdAmTcGJWNm2HV9lChoBkdAcAfm6XjU/mgHS8poCEdAmTdr9VFQVXV9lChoBkdAdDiEDQqqfmgHS+poCEdAmTdsFY+0PnV9lChoBkdAci+3AVO9FmgHTQMBaAhHQJk3ibqhUR51fZQoaAZHQHHE6H0se4loB0vzaAhHQJk4zo8p1A91fZQoaAZHQHFdIxHoX9BoB0vaaAhHQJk4zpMYdhl1fZQoaAZHQHIW/va11GNoB0vSaAhHQJk5Re8f3ex1fZQoaAZHQHAYjkyULUloB0vOaAhHQJk5sAwPAfx1fZQoaAZHQHD6Bouf29NoB0uiaAhHQJk5tFWn0kJ1fZQoaAZHQG8VG1x82JloB0vNaAhHQJk6Qrf+CK91fZQoaAZHQHGwQRf4REpoB0vfaAhHQJk64d92HL11fZQoaAZHQG8hsbNr0rdoB0vQaAhHQJk7I0vXbud1fZQoaAZHQHMaeJHiFTNoB0vHaAhHQJk7jJyQxN91fZQoaAZHQG8v+b3Gn4xoB0vAaAhHQJk7vL7oB7x1fZQoaAZHQHGyLT+ee4FoB0vcaAhHQJk8QdRzijt1fZQoaAZHQHIYTshPj4poB0vMaAhHQJk8UyHmA9V1fZQoaAZHQHEE08vEjxFoB0vcaAhHQJk9ODHwPRR1fZQoaAZHQHKSMEaESM9oB0vsaAhHQJk9w+/xlQN1fZQoaAZHQHJLvkaMrEtoB0vraAhHQJk99AOavzR1fZQoaAZHQG8cwJPZZjhoB0vSaAhHQJk+t5Qgs9V1fZQoaAZHQHFt1klNUOxoB0vKaAhHQJk/a0gKWs11fZQoaAZHQHMaU/GEPDpoB0vtaAhHQJk/ccm0E5h1fZQoaAZHQG+IJSaVlf9oB0u/aAhHQJk/x6cAiml1fZQoaAZHQHL65E2HclBoB0vsaAhHQJk/4o1DSgJ1fZQoaAZHQHMVWzru6VdoB00LAWgIR0CZQV+6iCardX2UKGgGR0BwwwqCpWFOaAdL6GgIR0CZQaykbgjydX2UKGgGR0BwpzI+4b0faAdL3mgIR0CZQbePq9oOdX2UKGgGR0BwJIvpQk5ZaAdLzWgIR0CZQbN3np0PdX2UKGgGR0BxbG1Bt1p1aAdNmwFoCEdAmUIkUfxMFnV9lChoBkdAcK3rZJ04i2gHS9FoCEdAmUKD2JzkqHV9lChoBkdAcTRmUGFBY2gHS7xoCEdAmUOARXfZVXV9lChoBkdAcTZW4Vh1DGgHTRwBaAhHQJlELcclw991fZQoaAZHQHMt/QWvbGpoB0vdaAhHQJlEZj2Bas91fZQoaAZHQHK5iZa3ZwpoB00fAWgIR0CZRNyNn5BUdX2UKGgGR0Bv2H/cWTHKaAdLxWgIR0CZRdWzWwu/dX2UKGgGR0Byuo5NoJzDaAdL0WgIR0CZRhgkTpPidX2UKGgGR0BycPzz3AVPaAdNJwFoCEdAmUYkP1+RYHV9lChoBkdAcp/8lHBk7WgHS+doCEdAmUZsaKk2xnV9lChoBkdAcjwOq//Nq2gHS+9oCEdAmUab+tKZlXV9lChoBkdAcDraBZpztGgHS7toCEdAmUb7vTgEU3V9lChoBkdAcfq6Y3Ns32gHS8JoCEdAmUfiIHkcTHV9lChoBkdAcsUlU6xPf2gHS9poCEdAmUgkAPuognV9lChoBkdAcS6ZIg/1QWgHTUsBaAhHQJlIcP07KaJ1fZQoaAZHQHI+CkKu0TloB0vNaAhHQJlIo/eLvTh1fZQoaAZHQHBmdX1anrJoB0vsaAhHQJlIqnJkoWp1fZQoaAZHQHKKje0ojOdoB0vUaAhHQJlJoznA6+51fZQoaAZHQHB82Op84PxoB00XAWgIR0CZScvybx3FdX2UKGgGR0BvtosiB5HFaAdLwmgIR0CZSd7ZFocrdX2UKGgGR0ByJ+801qFiaAdL3GgIR0CZSnGeMAFQdX2UKGgGR0Bw1l44ZMtcaAdLzWgIR0CZSpgogFHKdX2UKGgGR0BvDfRZ2ZAqaAdLwGgIR0CZS9JHAh0RdX2UKGgGR0Bw5Ijlgc94aAdLx2gIR0CZS9Il+mWMdX2UKGgGR0Bu9gG2TgVHaAdLsGgIR0CZS8f2saKldX2UKGgGR0ByFd3MY/FBaAdL2WgIR0CZS9S5iExqdX2UKGgGR0By3VwBHTZyaAdL4GgIR0CZTDySFGoadX2UKGgGR0BxRX9fkWAPaAdL5mgIR0CZTFz+m3vydX2UKGgGR0BwmgOpbUw0aAdLsmgIR0CZTNlfJFLGdX2UKGgGR0BxJW2y9mHyaAdL1GgIR0CZTYe0ojOcdX2UKGgGR0Buxp+2E0zkaAdLxWgIR0CZTdOgQHzIdX2UKGgGR0BxivZwn6VMaAdL4WgIR0CZTnP557gLdX2UKGgGR0BzkvvhIe5naAdLvGgIR0CZTrNd7fHhdX2UKGgGR0BxeULThHbzaAdLuGgIR0CZTssRg7YDdX2UKGgGR0BxhgVafSQYaAdL72gIR0CZUZpLmITHdX2UKGgGR0BymPNiYsunaAdNBQFoCEdAmVGmsq8UVXV9lChoBkdAcB/YSQHRkWgHTUIBaAhHQJlSRBUrCnB1fZQoaAZHQG9AUXpGFzxoB0vLaAhHQJlSTC/Glyl1fZQoaAZHQHMPdvXK8thoB00OAWgIR0CZUzd9Dx9YdX2UKGgGR0BySnvmYBvKaAdL1mgIR0CZU2X18LKFdX2UKGgGR0Bwp+bAk9lmaAdL6WgIR0CZU3wudwvQdX2UKGgGR0Bw56lXRw6yaAdL6mgIR0CZU3y7f51vdX2UKGgGR0Bz8H9uP3i8aAdL82gIR0CZU9Ucn3L3dX2UKGgGR0BzNrVz6rNoaAdL4GgIR0CZU+MzuWrwdX2UKGgGR0BxpMVSGahIaAdLs2gIR0CZVR9jPOY6dX2UKGgGR0BziGDQJHAiaAdL8mgIR0CZVVt65XlsdX2UKGgGR0BztXhaTwDvaAdNAAFoCEdAmVbxa1TisHV9lChoBkdAb+zI065oXmgHS9doCEdAmVcDlLeyiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |