xin0920 commited on
Commit
692ba48
·
verified ·
1 Parent(s): 671889e

Add new SparseEncoder model

Browse files
1_SpladePooling/config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "pooling_strategy": "max",
3
+ "activation_function": "relu",
4
+ "word_embedding_dimension": 30522
5
+ }
README.md ADDED
@@ -0,0 +1,1428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sparse-encoder
8
+ - sparse
9
+ - splade
10
+ - generated_from_trainer
11
+ - dataset_size:99000
12
+ - loss:SpladeLoss
13
+ - loss:SparseMultipleNegativesRankingLoss
14
+ - loss:FlopsLoss
15
+ base_model: distilbert/distilbert-base-uncased
16
+ widget:
17
+ - source_sentence: Time Travel Is It Possible?
18
+ sentences:
19
+ - Why can you not accelerate to faster than light?
20
+ - Is time travel possible? If yes how
21
+ - What do you hAve to say about time travel (I am not science student but I read
22
+ it on net and its so exciting topic but still no clear idea that is it possible
23
+ or it's just a rumour)?
24
+ - source_sentence: How can one be a good product manager?
25
+ sentences:
26
+ - How Do I become a product manager?
27
+ - Can you make online friends with other people on Quora?
28
+ - How do I become a product designer?
29
+ - source_sentence: How do I start a business? Where can I get a funding in India if
30
+ I have a really good idea?
31
+ sentences:
32
+ - I have an awesome app/website idea which may get more than a billion users. But
33
+ I don't have required money and coding skills. I tried crowd-funding but didn't
34
+ help. What should I do?
35
+ - How do I get funding for my web based startup idea?
36
+ - What is the most powerful dog?
37
+ - source_sentence: What are your favorite questions asked on Quora?
38
+ sentences:
39
+ - What are your favorite Quora questions and answers?
40
+ - How do you become a Successfull Game Developer?
41
+ - Who is your favorite Quora follower?
42
+ - source_sentence: Which laptop is best under 25000 INR?
43
+ sentences:
44
+ - Why was the 1000 rupee note replaced with a 2000 rupee note?
45
+ - What is the best laptop under 45k?
46
+ - What are the best laptops under 25k?
47
+ datasets:
48
+ - sentence-transformers/quora-duplicates
49
+ pipeline_tag: feature-extraction
50
+ library_name: sentence-transformers
51
+ metrics:
52
+ - dot_accuracy@1
53
+ - dot_accuracy@3
54
+ - dot_accuracy@5
55
+ - dot_accuracy@10
56
+ - dot_precision@1
57
+ - dot_precision@3
58
+ - dot_precision@5
59
+ - dot_precision@10
60
+ - dot_recall@1
61
+ - dot_recall@3
62
+ - dot_recall@5
63
+ - dot_recall@10
64
+ - dot_ndcg@10
65
+ - dot_mrr@10
66
+ - dot_map@100
67
+ - row_non_zero_mean_query
68
+ - row_sparsity_mean_query
69
+ - row_non_zero_mean_corpus
70
+ - row_sparsity_mean_corpus
71
+ model-index:
72
+ - name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
73
+ results:
74
+ - task:
75
+ type: sparse-information-retrieval
76
+ name: Sparse Information Retrieval
77
+ dataset:
78
+ name: NanoClimateFEVER
79
+ type: NanoClimateFEVER
80
+ metrics:
81
+ - type: dot_accuracy@1
82
+ value: 0.2
83
+ name: Dot Accuracy@1
84
+ - type: dot_accuracy@3
85
+ value: 0.34
86
+ name: Dot Accuracy@3
87
+ - type: dot_accuracy@5
88
+ value: 0.38
89
+ name: Dot Accuracy@5
90
+ - type: dot_accuracy@10
91
+ value: 0.46
92
+ name: Dot Accuracy@10
93
+ - type: dot_precision@1
94
+ value: 0.2
95
+ name: Dot Precision@1
96
+ - type: dot_precision@3
97
+ value: 0.12
98
+ name: Dot Precision@3
99
+ - type: dot_precision@5
100
+ value: 0.084
101
+ name: Dot Precision@5
102
+ - type: dot_precision@10
103
+ value: 0.05800000000000001
104
+ name: Dot Precision@10
105
+ - type: dot_recall@1
106
+ value: 0.08833333333333332
107
+ name: Dot Recall@1
108
+ - type: dot_recall@3
109
+ value: 0.15333333333333332
110
+ name: Dot Recall@3
111
+ - type: dot_recall@5
112
+ value: 0.17166666666666663
113
+ name: Dot Recall@5
114
+ - type: dot_recall@10
115
+ value: 0.2223333333333333
116
+ name: Dot Recall@10
117
+ - type: dot_ndcg@10
118
+ value: 0.19096782240643292
119
+ name: Dot Ndcg@10
120
+ - type: dot_mrr@10
121
+ value: 0.27904761904761904
122
+ name: Dot Mrr@10
123
+ - type: dot_map@100
124
+ value: 0.1448665229843916
125
+ name: Dot Map@100
126
+ - type: row_non_zero_mean_query
127
+ value: 83.12000274658203
128
+ name: Row Non Zero Mean Query
129
+ - type: row_sparsity_mean_query
130
+ value: 0.997276782989502
131
+ name: Row Sparsity Mean Query
132
+ - type: row_non_zero_mean_corpus
133
+ value: 196.82540893554688
134
+ name: Row Non Zero Mean Corpus
135
+ - type: row_sparsity_mean_corpus
136
+ value: 0.9935513138771057
137
+ name: Row Sparsity Mean Corpus
138
+ - task:
139
+ type: sparse-information-retrieval
140
+ name: Sparse Information Retrieval
141
+ dataset:
142
+ name: NanoDBPedia
143
+ type: NanoDBPedia
144
+ metrics:
145
+ - type: dot_accuracy@1
146
+ value: 0.46
147
+ name: Dot Accuracy@1
148
+ - type: dot_accuracy@3
149
+ value: 0.66
150
+ name: Dot Accuracy@3
151
+ - type: dot_accuracy@5
152
+ value: 0.76
153
+ name: Dot Accuracy@5
154
+ - type: dot_accuracy@10
155
+ value: 0.82
156
+ name: Dot Accuracy@10
157
+ - type: dot_precision@1
158
+ value: 0.46
159
+ name: Dot Precision@1
160
+ - type: dot_precision@3
161
+ value: 0.4599999999999999
162
+ name: Dot Precision@3
163
+ - type: dot_precision@5
164
+ value: 0.41200000000000003
165
+ name: Dot Precision@5
166
+ - type: dot_precision@10
167
+ value: 0.34800000000000003
168
+ name: Dot Precision@10
169
+ - type: dot_recall@1
170
+ value: 0.024992243870767848
171
+ name: Dot Recall@1
172
+ - type: dot_recall@3
173
+ value: 0.08610042820194802
174
+ name: Dot Recall@3
175
+ - type: dot_recall@5
176
+ value: 0.1356349864336842
177
+ name: Dot Recall@5
178
+ - type: dot_recall@10
179
+ value: 0.2108700010340366
180
+ name: Dot Recall@10
181
+ - type: dot_ndcg@10
182
+ value: 0.4008410950979539
183
+ name: Dot Ndcg@10
184
+ - type: dot_mrr@10
185
+ value: 0.5753888888888887
186
+ name: Dot Mrr@10
187
+ - type: dot_map@100
188
+ value: 0.23475075762293293
189
+ name: Dot Map@100
190
+ - type: row_non_zero_mean_query
191
+ value: 110.18000030517578
192
+ name: Row Non Zero Mean Query
193
+ - type: row_sparsity_mean_query
194
+ value: 0.9963901042938232
195
+ name: Row Sparsity Mean Query
196
+ - type: row_non_zero_mean_corpus
197
+ value: 146.9065399169922
198
+ name: Row Non Zero Mean Corpus
199
+ - type: row_sparsity_mean_corpus
200
+ value: 0.9951868057250977
201
+ name: Row Sparsity Mean Corpus
202
+ - task:
203
+ type: sparse-information-retrieval
204
+ name: Sparse Information Retrieval
205
+ dataset:
206
+ name: NanoFEVER
207
+ type: NanoFEVER
208
+ metrics:
209
+ - type: dot_accuracy@1
210
+ value: 0.56
211
+ name: Dot Accuracy@1
212
+ - type: dot_accuracy@3
213
+ value: 0.64
214
+ name: Dot Accuracy@3
215
+ - type: dot_accuracy@5
216
+ value: 0.72
217
+ name: Dot Accuracy@5
218
+ - type: dot_accuracy@10
219
+ value: 0.82
220
+ name: Dot Accuracy@10
221
+ - type: dot_precision@1
222
+ value: 0.56
223
+ name: Dot Precision@1
224
+ - type: dot_precision@3
225
+ value: 0.2333333333333333
226
+ name: Dot Precision@3
227
+ - type: dot_precision@5
228
+ value: 0.15600000000000003
229
+ name: Dot Precision@5
230
+ - type: dot_precision@10
231
+ value: 0.088
232
+ name: Dot Precision@10
233
+ - type: dot_recall@1
234
+ value: 0.5266666666666666
235
+ name: Dot Recall@1
236
+ - type: dot_recall@3
237
+ value: 0.6333333333333333
238
+ name: Dot Recall@3
239
+ - type: dot_recall@5
240
+ value: 0.7133333333333333
241
+ name: Dot Recall@5
242
+ - type: dot_recall@10
243
+ value: 0.8133333333333332
244
+ name: Dot Recall@10
245
+ - type: dot_ndcg@10
246
+ value: 0.6697436984572378
247
+ name: Dot Ndcg@10
248
+ - type: dot_mrr@10
249
+ value: 0.6316349206349205
250
+ name: Dot Mrr@10
251
+ - type: dot_map@100
252
+ value: 0.6281723194238796
253
+ name: Dot Map@100
254
+ - type: row_non_zero_mean_query
255
+ value: 96.77999877929688
256
+ name: Row Non Zero Mean Query
257
+ - type: row_sparsity_mean_query
258
+ value: 0.9968292117118835
259
+ name: Row Sparsity Mean Query
260
+ - type: row_non_zero_mean_corpus
261
+ value: 219.1212921142578
262
+ name: Row Non Zero Mean Corpus
263
+ - type: row_sparsity_mean_corpus
264
+ value: 0.9928209185600281
265
+ name: Row Sparsity Mean Corpus
266
+ - task:
267
+ type: sparse-information-retrieval
268
+ name: Sparse Information Retrieval
269
+ dataset:
270
+ name: NanoFiQA2018
271
+ type: NanoFiQA2018
272
+ metrics:
273
+ - type: dot_accuracy@1
274
+ value: 0.14
275
+ name: Dot Accuracy@1
276
+ - type: dot_accuracy@3
277
+ value: 0.32
278
+ name: Dot Accuracy@3
279
+ - type: dot_accuracy@5
280
+ value: 0.36
281
+ name: Dot Accuracy@5
282
+ - type: dot_accuracy@10
283
+ value: 0.44
284
+ name: Dot Accuracy@10
285
+ - type: dot_precision@1
286
+ value: 0.14
287
+ name: Dot Precision@1
288
+ - type: dot_precision@3
289
+ value: 0.12
290
+ name: Dot Precision@3
291
+ - type: dot_precision@5
292
+ value: 0.10400000000000001
293
+ name: Dot Precision@5
294
+ - type: dot_precision@10
295
+ value: 0.068
296
+ name: Dot Precision@10
297
+ - type: dot_recall@1
298
+ value: 0.06783333333333333
299
+ name: Dot Recall@1
300
+ - type: dot_recall@3
301
+ value: 0.14569047619047618
302
+ name: Dot Recall@3
303
+ - type: dot_recall@5
304
+ value: 0.20004761904761903
305
+ name: Dot Recall@5
306
+ - type: dot_recall@10
307
+ value: 0.2636825396825397
308
+ name: Dot Recall@10
309
+ - type: dot_ndcg@10
310
+ value: 0.19745078204560165
311
+ name: Dot Ndcg@10
312
+ - type: dot_mrr@10
313
+ value: 0.23552380952380955
314
+ name: Dot Mrr@10
315
+ - type: dot_map@100
316
+ value: 0.14731140504396462
317
+ name: Dot Map@100
318
+ - type: row_non_zero_mean_query
319
+ value: 80.33999633789062
320
+ name: Row Non Zero Mean Query
321
+ - type: row_sparsity_mean_query
322
+ value: 0.9973678588867188
323
+ name: Row Sparsity Mean Query
324
+ - type: row_non_zero_mean_corpus
325
+ value: 125.915771484375
326
+ name: Row Non Zero Mean Corpus
327
+ - type: row_sparsity_mean_corpus
328
+ value: 0.9958745241165161
329
+ name: Row Sparsity Mean Corpus
330
+ - task:
331
+ type: sparse-information-retrieval
332
+ name: Sparse Information Retrieval
333
+ dataset:
334
+ name: NanoHotpotQA
335
+ type: NanoHotpotQA
336
+ metrics:
337
+ - type: dot_accuracy@1
338
+ value: 0.46
339
+ name: Dot Accuracy@1
340
+ - type: dot_accuracy@3
341
+ value: 0.66
342
+ name: Dot Accuracy@3
343
+ - type: dot_accuracy@5
344
+ value: 0.72
345
+ name: Dot Accuracy@5
346
+ - type: dot_accuracy@10
347
+ value: 0.84
348
+ name: Dot Accuracy@10
349
+ - type: dot_precision@1
350
+ value: 0.46
351
+ name: Dot Precision@1
352
+ - type: dot_precision@3
353
+ value: 0.25333333333333335
354
+ name: Dot Precision@3
355
+ - type: dot_precision@5
356
+ value: 0.176
357
+ name: Dot Precision@5
358
+ - type: dot_precision@10
359
+ value: 0.11
360
+ name: Dot Precision@10
361
+ - type: dot_recall@1
362
+ value: 0.23
363
+ name: Dot Recall@1
364
+ - type: dot_recall@3
365
+ value: 0.38
366
+ name: Dot Recall@3
367
+ - type: dot_recall@5
368
+ value: 0.44
369
+ name: Dot Recall@5
370
+ - type: dot_recall@10
371
+ value: 0.55
372
+ name: Dot Recall@10
373
+ - type: dot_ndcg@10
374
+ value: 0.4642094806420616
375
+ name: Dot Ndcg@10
376
+ - type: dot_mrr@10
377
+ value: 0.5762777777777778
378
+ name: Dot Mrr@10
379
+ - type: dot_map@100
380
+ value: 0.3781729878529178
381
+ name: Dot Map@100
382
+ - type: row_non_zero_mean_query
383
+ value: 87.26000213623047
384
+ name: Row Non Zero Mean Query
385
+ - type: row_sparsity_mean_query
386
+ value: 0.9971410632133484
387
+ name: Row Sparsity Mean Query
388
+ - type: row_non_zero_mean_corpus
389
+ value: 166.47190856933594
390
+ name: Row Non Zero Mean Corpus
391
+ - type: row_sparsity_mean_corpus
392
+ value: 0.9945458173751831
393
+ name: Row Sparsity Mean Corpus
394
+ - task:
395
+ type: sparse-information-retrieval
396
+ name: Sparse Information Retrieval
397
+ dataset:
398
+ name: NanoMSMARCO
399
+ type: NanoMSMARCO
400
+ metrics:
401
+ - type: dot_accuracy@1
402
+ value: 0.16
403
+ name: Dot Accuracy@1
404
+ - type: dot_accuracy@3
405
+ value: 0.26
406
+ name: Dot Accuracy@3
407
+ - type: dot_accuracy@5
408
+ value: 0.36
409
+ name: Dot Accuracy@5
410
+ - type: dot_accuracy@10
411
+ value: 0.46
412
+ name: Dot Accuracy@10
413
+ - type: dot_precision@1
414
+ value: 0.16
415
+ name: Dot Precision@1
416
+ - type: dot_precision@3
417
+ value: 0.08666666666666666
418
+ name: Dot Precision@3
419
+ - type: dot_precision@5
420
+ value: 0.07200000000000001
421
+ name: Dot Precision@5
422
+ - type: dot_precision@10
423
+ value: 0.046000000000000006
424
+ name: Dot Precision@10
425
+ - type: dot_recall@1
426
+ value: 0.16
427
+ name: Dot Recall@1
428
+ - type: dot_recall@3
429
+ value: 0.26
430
+ name: Dot Recall@3
431
+ - type: dot_recall@5
432
+ value: 0.36
433
+ name: Dot Recall@5
434
+ - type: dot_recall@10
435
+ value: 0.46
436
+ name: Dot Recall@10
437
+ - type: dot_ndcg@10
438
+ value: 0.2889744107825637
439
+ name: Dot Ndcg@10
440
+ - type: dot_mrr@10
441
+ value: 0.23699999999999996
442
+ name: Dot Mrr@10
443
+ - type: dot_map@100
444
+ value: 0.2547054047317205
445
+ name: Dot Map@100
446
+ - type: row_non_zero_mean_query
447
+ value: 96.05999755859375
448
+ name: Row Non Zero Mean Query
449
+ - type: row_sparsity_mean_query
450
+ value: 0.996852695941925
451
+ name: Row Sparsity Mean Query
452
+ - type: row_non_zero_mean_corpus
453
+ value: 105.46202850341797
454
+ name: Row Non Zero Mean Corpus
455
+ - type: row_sparsity_mean_corpus
456
+ value: 0.9965446591377258
457
+ name: Row Sparsity Mean Corpus
458
+ - task:
459
+ type: sparse-information-retrieval
460
+ name: Sparse Information Retrieval
461
+ dataset:
462
+ name: NanoNFCorpus
463
+ type: NanoNFCorpus
464
+ metrics:
465
+ - type: dot_accuracy@1
466
+ value: 0.28
467
+ name: Dot Accuracy@1
468
+ - type: dot_accuracy@3
469
+ value: 0.36
470
+ name: Dot Accuracy@3
471
+ - type: dot_accuracy@5
472
+ value: 0.4
473
+ name: Dot Accuracy@5
474
+ - type: dot_accuracy@10
475
+ value: 0.44
476
+ name: Dot Accuracy@10
477
+ - type: dot_precision@1
478
+ value: 0.28
479
+ name: Dot Precision@1
480
+ - type: dot_precision@3
481
+ value: 0.18666666666666665
482
+ name: Dot Precision@3
483
+ - type: dot_precision@5
484
+ value: 0.18
485
+ name: Dot Precision@5
486
+ - type: dot_precision@10
487
+ value: 0.14800000000000002
488
+ name: Dot Precision@10
489
+ - type: dot_recall@1
490
+ value: 0.01004738213752895
491
+ name: Dot Recall@1
492
+ - type: dot_recall@3
493
+ value: 0.017620026805744985
494
+ name: Dot Recall@3
495
+ - type: dot_recall@5
496
+ value: 0.031161291315801767
497
+ name: Dot Recall@5
498
+ - type: dot_recall@10
499
+ value: 0.04364801295748046
500
+ name: Dot Recall@10
501
+ - type: dot_ndcg@10
502
+ value: 0.16900908943281664
503
+ name: Dot Ndcg@10
504
+ - type: dot_mrr@10
505
+ value: 0.3281666666666666
506
+ name: Dot Mrr@10
507
+ - type: dot_map@100
508
+ value: 0.04873203232918475
509
+ name: Dot Map@100
510
+ - type: row_non_zero_mean_query
511
+ value: 122.94000244140625
512
+ name: Row Non Zero Mean Query
513
+ - type: row_sparsity_mean_query
514
+ value: 0.9959720373153687
515
+ name: Row Sparsity Mean Query
516
+ - type: row_non_zero_mean_corpus
517
+ value: 199.5936279296875
518
+ name: Row Non Zero Mean Corpus
519
+ - type: row_sparsity_mean_corpus
520
+ value: 0.9934607744216919
521
+ name: Row Sparsity Mean Corpus
522
+ - task:
523
+ type: sparse-information-retrieval
524
+ name: Sparse Information Retrieval
525
+ dataset:
526
+ name: NanoNQ
527
+ type: NanoNQ
528
+ metrics:
529
+ - type: dot_accuracy@1
530
+ value: 0.18
531
+ name: Dot Accuracy@1
532
+ - type: dot_accuracy@3
533
+ value: 0.34
534
+ name: Dot Accuracy@3
535
+ - type: dot_accuracy@5
536
+ value: 0.4
537
+ name: Dot Accuracy@5
538
+ - type: dot_accuracy@10
539
+ value: 0.48
540
+ name: Dot Accuracy@10
541
+ - type: dot_precision@1
542
+ value: 0.18
543
+ name: Dot Precision@1
544
+ - type: dot_precision@3
545
+ value: 0.11333333333333333
546
+ name: Dot Precision@3
547
+ - type: dot_precision@5
548
+ value: 0.08
549
+ name: Dot Precision@5
550
+ - type: dot_precision@10
551
+ value: 0.04800000000000001
552
+ name: Dot Precision@10
553
+ - type: dot_recall@1
554
+ value: 0.17
555
+ name: Dot Recall@1
556
+ - type: dot_recall@3
557
+ value: 0.32
558
+ name: Dot Recall@3
559
+ - type: dot_recall@5
560
+ value: 0.38
561
+ name: Dot Recall@5
562
+ - type: dot_recall@10
563
+ value: 0.46
564
+ name: Dot Recall@10
565
+ - type: dot_ndcg@10
566
+ value: 0.30557584177037744
567
+ name: Dot Ndcg@10
568
+ - type: dot_mrr@10
569
+ value: 0.26749206349206345
570
+ name: Dot Mrr@10
571
+ - type: dot_map@100
572
+ value: 0.26111102151483273
573
+ name: Dot Map@100
574
+ - type: row_non_zero_mean_query
575
+ value: 79.22000122070312
576
+ name: Row Non Zero Mean Query
577
+ - type: row_sparsity_mean_query
578
+ value: 0.9974044561386108
579
+ name: Row Sparsity Mean Query
580
+ - type: row_non_zero_mean_corpus
581
+ value: 145.250244140625
582
+ name: Row Non Zero Mean Corpus
583
+ - type: row_sparsity_mean_corpus
584
+ value: 0.995241105556488
585
+ name: Row Sparsity Mean Corpus
586
+ - task:
587
+ type: sparse-information-retrieval
588
+ name: Sparse Information Retrieval
589
+ dataset:
590
+ name: NanoQuoraRetrieval
591
+ type: NanoQuoraRetrieval
592
+ metrics:
593
+ - type: dot_accuracy@1
594
+ value: 0.92
595
+ name: Dot Accuracy@1
596
+ - type: dot_accuracy@3
597
+ value: 0.96
598
+ name: Dot Accuracy@3
599
+ - type: dot_accuracy@5
600
+ value: 1.0
601
+ name: Dot Accuracy@5
602
+ - type: dot_accuracy@10
603
+ value: 1.0
604
+ name: Dot Accuracy@10
605
+ - type: dot_precision@1
606
+ value: 0.92
607
+ name: Dot Precision@1
608
+ - type: dot_precision@3
609
+ value: 0.3733333333333333
610
+ name: Dot Precision@3
611
+ - type: dot_precision@5
612
+ value: 0.256
613
+ name: Dot Precision@5
614
+ - type: dot_precision@10
615
+ value: 0.132
616
+ name: Dot Precision@10
617
+ - type: dot_recall@1
618
+ value: 0.8206666666666667
619
+ name: Dot Recall@1
620
+ - type: dot_recall@3
621
+ value: 0.8986666666666667
622
+ name: Dot Recall@3
623
+ - type: dot_recall@5
624
+ value: 0.9726666666666667
625
+ name: Dot Recall@5
626
+ - type: dot_recall@10
627
+ value: 0.9826666666666667
628
+ name: Dot Recall@10
629
+ - type: dot_ndcg@10
630
+ value: 0.9456812009077233
631
+ name: Dot Ndcg@10
632
+ - type: dot_mrr@10
633
+ value: 0.95
634
+ name: Dot Mrr@10
635
+ - type: dot_map@100
636
+ value: 0.9232605046294702
637
+ name: Dot Map@100
638
+ - type: row_non_zero_mean_query
639
+ value: 73.83999633789062
640
+ name: Row Non Zero Mean Query
641
+ - type: row_sparsity_mean_query
642
+ value: 0.9975807070732117
643
+ name: Row Sparsity Mean Query
644
+ - type: row_non_zero_mean_corpus
645
+ value: 74.96769714355469
646
+ name: Row Non Zero Mean Corpus
647
+ - type: row_sparsity_mean_corpus
648
+ value: 0.9975438117980957
649
+ name: Row Sparsity Mean Corpus
650
+ - task:
651
+ type: sparse-information-retrieval
652
+ name: Sparse Information Retrieval
653
+ dataset:
654
+ name: NanoSCIDOCS
655
+ type: NanoSCIDOCS
656
+ metrics:
657
+ - type: dot_accuracy@1
658
+ value: 0.36
659
+ name: Dot Accuracy@1
660
+ - type: dot_accuracy@3
661
+ value: 0.5
662
+ name: Dot Accuracy@3
663
+ - type: dot_accuracy@5
664
+ value: 0.62
665
+ name: Dot Accuracy@5
666
+ - type: dot_accuracy@10
667
+ value: 0.7
668
+ name: Dot Accuracy@10
669
+ - type: dot_precision@1
670
+ value: 0.36
671
+ name: Dot Precision@1
672
+ - type: dot_precision@3
673
+ value: 0.26
674
+ name: Dot Precision@3
675
+ - type: dot_precision@5
676
+ value: 0.19199999999999995
677
+ name: Dot Precision@5
678
+ - type: dot_precision@10
679
+ value: 0.12399999999999999
680
+ name: Dot Precision@10
681
+ - type: dot_recall@1
682
+ value: 0.07666666666666666
683
+ name: Dot Recall@1
684
+ - type: dot_recall@3
685
+ value: 0.16166666666666665
686
+ name: Dot Recall@3
687
+ - type: dot_recall@5
688
+ value: 0.19766666666666666
689
+ name: Dot Recall@5
690
+ - type: dot_recall@10
691
+ value: 0.25466666666666665
692
+ name: Dot Recall@10
693
+ - type: dot_ndcg@10
694
+ value: 0.2640445339047696
695
+ name: Dot Ndcg@10
696
+ - type: dot_mrr@10
697
+ value: 0.45502380952380955
698
+ name: Dot Mrr@10
699
+ - type: dot_map@100
700
+ value: 0.18681370322897212
701
+ name: Dot Map@100
702
+ - type: row_non_zero_mean_query
703
+ value: 95.91999816894531
704
+ name: Row Non Zero Mean Query
705
+ - type: row_sparsity_mean_query
706
+ value: 0.9968574047088623
707
+ name: Row Sparsity Mean Query
708
+ - type: row_non_zero_mean_corpus
709
+ value: 184.44908142089844
710
+ name: Row Non Zero Mean Corpus
711
+ - type: row_sparsity_mean_corpus
712
+ value: 0.9939568638801575
713
+ name: Row Sparsity Mean Corpus
714
+ - task:
715
+ type: sparse-information-retrieval
716
+ name: Sparse Information Retrieval
717
+ dataset:
718
+ name: NanoArguAna
719
+ type: NanoArguAna
720
+ metrics:
721
+ - type: dot_accuracy@1
722
+ value: 0.1
723
+ name: Dot Accuracy@1
724
+ - type: dot_accuracy@3
725
+ value: 0.28
726
+ name: Dot Accuracy@3
727
+ - type: dot_accuracy@5
728
+ value: 0.32
729
+ name: Dot Accuracy@5
730
+ - type: dot_accuracy@10
731
+ value: 0.38
732
+ name: Dot Accuracy@10
733
+ - type: dot_precision@1
734
+ value: 0.1
735
+ name: Dot Precision@1
736
+ - type: dot_precision@3
737
+ value: 0.09333333333333332
738
+ name: Dot Precision@3
739
+ - type: dot_precision@5
740
+ value: 0.064
741
+ name: Dot Precision@5
742
+ - type: dot_precision@10
743
+ value: 0.038000000000000006
744
+ name: Dot Precision@10
745
+ - type: dot_recall@1
746
+ value: 0.1
747
+ name: Dot Recall@1
748
+ - type: dot_recall@3
749
+ value: 0.28
750
+ name: Dot Recall@3
751
+ - type: dot_recall@5
752
+ value: 0.32
753
+ name: Dot Recall@5
754
+ - type: dot_recall@10
755
+ value: 0.38
756
+ name: Dot Recall@10
757
+ - type: dot_ndcg@10
758
+ value: 0.24652298080535653
759
+ name: Dot Ndcg@10
760
+ - type: dot_mrr@10
761
+ value: 0.2033571428571429
762
+ name: Dot Mrr@10
763
+ - type: dot_map@100
764
+ value: 0.2089304613637203
765
+ name: Dot Map@100
766
+ - type: row_non_zero_mean_query
767
+ value: 181.27999877929688
768
+ name: Row Non Zero Mean Query
769
+ - type: row_sparsity_mean_query
770
+ value: 0.9940606951713562
771
+ name: Row Sparsity Mean Query
772
+ - type: row_non_zero_mean_corpus
773
+ value: 160.55982971191406
774
+ name: Row Non Zero Mean Corpus
775
+ - type: row_sparsity_mean_corpus
776
+ value: 0.9947395324707031
777
+ name: Row Sparsity Mean Corpus
778
+ - task:
779
+ type: sparse-information-retrieval
780
+ name: Sparse Information Retrieval
781
+ dataset:
782
+ name: NanoSciFact
783
+ type: NanoSciFact
784
+ metrics:
785
+ - type: dot_accuracy@1
786
+ value: 0.38
787
+ name: Dot Accuracy@1
788
+ - type: dot_accuracy@3
789
+ value: 0.56
790
+ name: Dot Accuracy@3
791
+ - type: dot_accuracy@5
792
+ value: 0.64
793
+ name: Dot Accuracy@5
794
+ - type: dot_accuracy@10
795
+ value: 0.66
796
+ name: Dot Accuracy@10
797
+ - type: dot_precision@1
798
+ value: 0.38
799
+ name: Dot Precision@1
800
+ - type: dot_precision@3
801
+ value: 0.19333333333333333
802
+ name: Dot Precision@3
803
+ - type: dot_precision@5
804
+ value: 0.14
805
+ name: Dot Precision@5
806
+ - type: dot_precision@10
807
+ value: 0.07200000000000001
808
+ name: Dot Precision@10
809
+ - type: dot_recall@1
810
+ value: 0.365
811
+ name: Dot Recall@1
812
+ - type: dot_recall@3
813
+ value: 0.54
814
+ name: Dot Recall@3
815
+ - type: dot_recall@5
816
+ value: 0.61
817
+ name: Dot Recall@5
818
+ - type: dot_recall@10
819
+ value: 0.63
820
+ name: Dot Recall@10
821
+ - type: dot_ndcg@10
822
+ value: 0.5012811403788975
823
+ name: Dot Ndcg@10
824
+ - type: dot_mrr@10
825
+ value: 0.4666666666666666
826
+ name: Dot Mrr@10
827
+ - type: dot_map@100
828
+ value: 0.4647112383054177
829
+ name: Dot Map@100
830
+ - type: row_non_zero_mean_query
831
+ value: 90.80000305175781
832
+ name: Row Non Zero Mean Query
833
+ - type: row_sparsity_mean_query
834
+ value: 0.9970251321792603
835
+ name: Row Sparsity Mean Query
836
+ - type: row_non_zero_mean_corpus
837
+ value: 197.8948211669922
838
+ name: Row Non Zero Mean Corpus
839
+ - type: row_sparsity_mean_corpus
840
+ value: 0.9935163259506226
841
+ name: Row Sparsity Mean Corpus
842
+ - task:
843
+ type: sparse-information-retrieval
844
+ name: Sparse Information Retrieval
845
+ dataset:
846
+ name: NanoTouche2020
847
+ type: NanoTouche2020
848
+ metrics:
849
+ - type: dot_accuracy@1
850
+ value: 0.4897959183673469
851
+ name: Dot Accuracy@1
852
+ - type: dot_accuracy@3
853
+ value: 0.7551020408163265
854
+ name: Dot Accuracy@3
855
+ - type: dot_accuracy@5
856
+ value: 0.8367346938775511
857
+ name: Dot Accuracy@5
858
+ - type: dot_accuracy@10
859
+ value: 0.9387755102040817
860
+ name: Dot Accuracy@10
861
+ - type: dot_precision@1
862
+ value: 0.4897959183673469
863
+ name: Dot Precision@1
864
+ - type: dot_precision@3
865
+ value: 0.43537414965986393
866
+ name: Dot Precision@3
867
+ - type: dot_precision@5
868
+ value: 0.42857142857142855
869
+ name: Dot Precision@5
870
+ - type: dot_precision@10
871
+ value: 0.336734693877551
872
+ name: Dot Precision@10
873
+ - type: dot_recall@1
874
+ value: 0.03231843040459851
875
+ name: Dot Recall@1
876
+ - type: dot_recall@3
877
+ value: 0.08325211008018112
878
+ name: Dot Recall@3
879
+ - type: dot_recall@5
880
+ value: 0.13623768956747034
881
+ name: Dot Recall@5
882
+ - type: dot_recall@10
883
+ value: 0.20745266217275266
884
+ name: Dot Recall@10
885
+ - type: dot_ndcg@10
886
+ value: 0.3790647958645717
887
+ name: Dot Ndcg@10
888
+ - type: dot_mrr@10
889
+ value: 0.6323372206025266
890
+ name: Dot Mrr@10
891
+ - type: dot_map@100
892
+ value: 0.2305586843086588
893
+ name: Dot Map@100
894
+ - type: row_non_zero_mean_query
895
+ value: 78.7755126953125
896
+ name: Row Non Zero Mean Query
897
+ - type: row_sparsity_mean_query
898
+ value: 0.9974190592765808
899
+ name: Row Sparsity Mean Query
900
+ - type: row_non_zero_mean_corpus
901
+ value: 140.8109588623047
902
+ name: Row Non Zero Mean Corpus
903
+ - type: row_sparsity_mean_corpus
904
+ value: 0.9953866004943848
905
+ name: Row Sparsity Mean Corpus
906
+ - task:
907
+ type: sparse-nano-beir
908
+ name: Sparse Nano BEIR
909
+ dataset:
910
+ name: NanoBEIR mean
911
+ type: NanoBEIR_mean
912
+ metrics:
913
+ - type: dot_accuracy@1
914
+ value: 0.3607535321821036
915
+ name: Dot Accuracy@1
916
+ - type: dot_accuracy@3
917
+ value: 0.510392464678179
918
+ name: Dot Accuracy@3
919
+ - type: dot_accuracy@5
920
+ value: 0.578210361067504
921
+ name: Dot Accuracy@5
922
+ - type: dot_accuracy@10
923
+ value: 0.6491365777080063
924
+ name: Dot Accuracy@10
925
+ - type: dot_precision@1
926
+ value: 0.3607535321821036
927
+ name: Dot Precision@1
928
+ - type: dot_precision@3
929
+ value: 0.2252851909994767
930
+ name: Dot Precision@3
931
+ - type: dot_precision@5
932
+ value: 0.18035164835164832
933
+ name: Dot Precision@5
934
+ - type: dot_precision@10
935
+ value: 0.1243642072213501
936
+ name: Dot Precision@10
937
+ - type: dot_recall@1
938
+ value: 0.20557882485227402
939
+ name: Dot Recall@1
940
+ - type: dot_recall@3
941
+ value: 0.3045894647137193
942
+ name: Dot Recall@3
943
+ - type: dot_recall@5
944
+ value: 0.3591088399767622
945
+ name: Dot Recall@5
946
+ - type: dot_recall@10
947
+ value: 0.42143486275744696
948
+ name: Dot Recall@10
949
+ - type: dot_ndcg@10
950
+ value: 0.3864128363458742
951
+ name: Dot Ndcg@10
952
+ - type: dot_mrr@10
953
+ value: 0.44907050659091463
954
+ name: Dot Mrr@10
955
+ - type: dot_map@100
956
+ value: 0.31631515718000486
957
+ name: Dot Map@100
958
+ - type: row_non_zero_mean_query
959
+ value: 98.19350081223708
960
+ name: Row Non Zero Mean Query
961
+ - type: row_sparsity_mean_query
962
+ value: 0.9967828622231116
963
+ name: Row Sparsity Mean Query
964
+ - type: row_non_zero_mean_corpus
965
+ value: 158.7868622999925
966
+ name: Row Non Zero Mean Corpus
967
+ - type: row_sparsity_mean_corpus
968
+ value: 0.994797619489523
969
+ name: Row Sparsity Mean Corpus
970
+ ---
971
+
972
+ # splade-distilbert-base-uncased trained on Quora Duplicates Questions
973
+
974
+ This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
975
+
976
+ ## Model Details
977
+
978
+ ### Model Description
979
+ - **Model Type:** SPLADE Sparse Encoder
980
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
981
+ - **Maximum Sequence Length:** 256 tokens
982
+ - **Output Dimensionality:** 30522 dimensions
983
+ - **Similarity Function:** Dot Product
984
+ - **Training Dataset:**
985
+ - [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
986
+ - **Language:** en
987
+ - **License:** apache-2.0
988
+
989
+ ### Model Sources
990
+
991
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
992
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
993
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
994
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
995
+
996
+ ### Full Model Architecture
997
+
998
+ ```
999
+ SparseEncoder(
1000
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
1001
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
1002
+ )
1003
+ ```
1004
+
1005
+ ## Usage
1006
+
1007
+ ### Direct Usage (Sentence Transformers)
1008
+
1009
+ First install the Sentence Transformers library:
1010
+
1011
+ ```bash
1012
+ pip install -U sentence-transformers
1013
+ ```
1014
+
1015
+ Then you can load this model and run inference.
1016
+ ```python
1017
+ from sentence_transformers import SparseEncoder
1018
+
1019
+ # Download from the 🤗 Hub
1020
+ model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
1021
+ # Run inference
1022
+ sentences = [
1023
+ 'Which laptop is best under 25000 INR?',
1024
+ 'What are the best laptops under 25k?',
1025
+ 'What is the best laptop under 45k?',
1026
+ ]
1027
+ embeddings = model.encode(sentences)
1028
+ print(embeddings.shape)
1029
+ # (3, 30522)
1030
+
1031
+ # Get the similarity scores for the embeddings
1032
+ similarities = model.similarity(embeddings, embeddings)
1033
+ print(similarities.shape)
1034
+ # [3, 3]
1035
+ ```
1036
+
1037
+ <!--
1038
+ ### Direct Usage (Transformers)
1039
+
1040
+ <details><summary>Click to see the direct usage in Transformers</summary>
1041
+
1042
+ </details>
1043
+ -->
1044
+
1045
+ <!--
1046
+ ### Downstream Usage (Sentence Transformers)
1047
+
1048
+ You can finetune this model on your own dataset.
1049
+
1050
+ <details><summary>Click to expand</summary>
1051
+
1052
+ </details>
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Out-of-Scope Use
1057
+
1058
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1059
+ -->
1060
+
1061
+ ## Evaluation
1062
+
1063
+ ### Metrics
1064
+
1065
+ #### Sparse Information Retrieval
1066
+
1067
+ * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
1068
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
1069
+
1070
+ | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
1071
+ |:-------------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
1072
+ | dot_accuracy@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
1073
+ | dot_accuracy@3 | 0.34 | 0.66 | 0.64 | 0.32 | 0.66 | 0.26 | 0.36 | 0.34 | 0.96 | 0.5 | 0.28 | 0.56 | 0.7551 |
1074
+ | dot_accuracy@5 | 0.38 | 0.76 | 0.72 | 0.36 | 0.72 | 0.36 | 0.4 | 0.4 | 1.0 | 0.62 | 0.32 | 0.64 | 0.8367 |
1075
+ | dot_accuracy@10 | 0.46 | 0.82 | 0.82 | 0.44 | 0.84 | 0.46 | 0.44 | 0.48 | 1.0 | 0.7 | 0.38 | 0.66 | 0.9388 |
1076
+ | dot_precision@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
1077
+ | dot_precision@3 | 0.12 | 0.46 | 0.2333 | 0.12 | 0.2533 | 0.0867 | 0.1867 | 0.1133 | 0.3733 | 0.26 | 0.0933 | 0.1933 | 0.4354 |
1078
+ | dot_precision@5 | 0.084 | 0.412 | 0.156 | 0.104 | 0.176 | 0.072 | 0.18 | 0.08 | 0.256 | 0.192 | 0.064 | 0.14 | 0.4286 |
1079
+ | dot_precision@10 | 0.058 | 0.348 | 0.088 | 0.068 | 0.11 | 0.046 | 0.148 | 0.048 | 0.132 | 0.124 | 0.038 | 0.072 | 0.3367 |
1080
+ | dot_recall@1 | 0.0883 | 0.025 | 0.5267 | 0.0678 | 0.23 | 0.16 | 0.01 | 0.17 | 0.8207 | 0.0767 | 0.1 | 0.365 | 0.0323 |
1081
+ | dot_recall@3 | 0.1533 | 0.0861 | 0.6333 | 0.1457 | 0.38 | 0.26 | 0.0176 | 0.32 | 0.8987 | 0.1617 | 0.28 | 0.54 | 0.0833 |
1082
+ | dot_recall@5 | 0.1717 | 0.1356 | 0.7133 | 0.2 | 0.44 | 0.36 | 0.0312 | 0.38 | 0.9727 | 0.1977 | 0.32 | 0.61 | 0.1362 |
1083
+ | dot_recall@10 | 0.2223 | 0.2109 | 0.8133 | 0.2637 | 0.55 | 0.46 | 0.0436 | 0.46 | 0.9827 | 0.2547 | 0.38 | 0.63 | 0.2075 |
1084
+ | **dot_ndcg@10** | **0.191** | **0.4008** | **0.6697** | **0.1975** | **0.4642** | **0.289** | **0.169** | **0.3056** | **0.9457** | **0.264** | **0.2465** | **0.5013** | **0.3791** |
1085
+ | dot_mrr@10 | 0.279 | 0.5754 | 0.6316 | 0.2355 | 0.5763 | 0.237 | 0.3282 | 0.2675 | 0.95 | 0.455 | 0.2034 | 0.4667 | 0.6323 |
1086
+ | dot_map@100 | 0.1449 | 0.2348 | 0.6282 | 0.1473 | 0.3782 | 0.2547 | 0.0487 | 0.2611 | 0.9233 | 0.1868 | 0.2089 | 0.4647 | 0.2306 |
1087
+ | row_non_zero_mean_query | 83.12 | 110.18 | 96.78 | 80.34 | 87.26 | 96.06 | 122.94 | 79.22 | 73.84 | 95.92 | 181.28 | 90.8 | 78.7755 |
1088
+ | row_sparsity_mean_query | 0.9973 | 0.9964 | 0.9968 | 0.9974 | 0.9971 | 0.9969 | 0.996 | 0.9974 | 0.9976 | 0.9969 | 0.9941 | 0.997 | 0.9974 |
1089
+ | row_non_zero_mean_corpus | 196.8254 | 146.9065 | 219.1213 | 125.9158 | 166.4719 | 105.462 | 199.5936 | 145.2502 | 74.9677 | 184.4491 | 160.5598 | 197.8948 | 140.811 |
1090
+ | row_sparsity_mean_corpus | 0.9936 | 0.9952 | 0.9928 | 0.9959 | 0.9945 | 0.9965 | 0.9935 | 0.9952 | 0.9975 | 0.994 | 0.9947 | 0.9935 | 0.9954 |
1091
+
1092
+ #### Sparse Nano BEIR
1093
+
1094
+ * Dataset: `NanoBEIR_mean`
1095
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
1096
+ ```json
1097
+ {
1098
+ "dataset_names": [
1099
+ "climatefever",
1100
+ "dbpedia",
1101
+ "fever",
1102
+ "fiqa2018",
1103
+ "hotpotqa",
1104
+ "msmarco",
1105
+ "nfcorpus",
1106
+ "nq",
1107
+ "quoraretrieval",
1108
+ "scidocs",
1109
+ "arguana",
1110
+ "scifact",
1111
+ "touche2020"
1112
+ ]
1113
+ }
1114
+ ```
1115
+
1116
+ | Metric | Value |
1117
+ |:-------------------------|:-----------|
1118
+ | dot_accuracy@1 | 0.3608 |
1119
+ | dot_accuracy@3 | 0.5104 |
1120
+ | dot_accuracy@5 | 0.5782 |
1121
+ | dot_accuracy@10 | 0.6491 |
1122
+ | dot_precision@1 | 0.3608 |
1123
+ | dot_precision@3 | 0.2253 |
1124
+ | dot_precision@5 | 0.1804 |
1125
+ | dot_precision@10 | 0.1244 |
1126
+ | dot_recall@1 | 0.2056 |
1127
+ | dot_recall@3 | 0.3046 |
1128
+ | dot_recall@5 | 0.3591 |
1129
+ | dot_recall@10 | 0.4214 |
1130
+ | **dot_ndcg@10** | **0.3864** |
1131
+ | dot_mrr@10 | 0.4491 |
1132
+ | dot_map@100 | 0.3163 |
1133
+ | row_non_zero_mean_query | 98.1935 |
1134
+ | row_sparsity_mean_query | 0.9968 |
1135
+ | row_non_zero_mean_corpus | 158.7869 |
1136
+ | row_sparsity_mean_corpus | 0.9948 |
1137
+
1138
+ <!--
1139
+ ## Bias, Risks and Limitations
1140
+
1141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1142
+ -->
1143
+
1144
+ <!--
1145
+ ### Recommendations
1146
+
1147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1148
+ -->
1149
+
1150
+ ## Training Details
1151
+
1152
+ ### Training Dataset
1153
+
1154
+ #### quora-duplicates
1155
+
1156
+ * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
1157
+ * Size: 99,000 training samples
1158
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
1159
+ * Approximate statistics based on the first 1000 samples:
1160
+ | | anchor | positive | negative |
1161
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1162
+ | type | string | string | string |
1163
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.1 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.83 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.21 tokens</li><li>max: 75 tokens</li></ul> |
1164
+ * Samples:
1165
+ | anchor | positive | negative |
1166
+ |:----------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1167
+ | <code>What are the best GMAT coaching institutes in Delhi NCR?</code> | <code>Which are the best GMAT coaching institutes in Delhi/NCR?</code> | <code>What are the best GMAT coaching institutes in Delhi-Noida Area?</code> |
1168
+ | <code>Is a third world war coming?</code> | <code>Is World War 3 more imminent than expected?</code> | <code>Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?</code> |
1169
+ | <code>Should I build iOS or Android apps first?</code> | <code>Should people choose Android or iOS first to build their App?</code> | <code>How much more effort is it to build your app on both iOS and Android?</code> |
1170
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
1171
+ ```json
1172
+ {'loss': SparseMultipleNegativesRankingLoss(
1173
+ (model): SparseEncoder(
1174
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
1175
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
1176
+ )
1177
+ (cross_entropy_loss): CrossEntropyLoss()
1178
+ ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
1179
+ ```
1180
+
1181
+ ### Evaluation Dataset
1182
+
1183
+ #### quora-duplicates
1184
+
1185
+ * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
1186
+ * Size: 1,000 evaluation samples
1187
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
1188
+ * Approximate statistics based on the first 1000 samples:
1189
+ | | anchor | positive | negative |
1190
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1191
+ | type | string | string | string |
1192
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.56 tokens</li><li>max: 60 tokens</li></ul> |
1193
+ * Samples:
1194
+ | anchor | positive | negative |
1195
+ |:-------------------------------------------------------------------|:------------------------------------------------------------|:-----------------------------------------------------------------|
1196
+ | <code>What happens if we use petrol in diesel vehicles?</code> | <code>Why can't we use petrol in diesel?</code> | <code>Why are diesel engines noisier than petrol engines?</code> |
1197
+ | <code>Why is Saltwater taffy candy imported in Switzerland?</code> | <code>Why is Saltwater taffy candy imported in Laos?</code> | <code>Is salt a consumer product?</code> |
1198
+ | <code>Which is your favourite film in 2016?</code> | <code>What movie is the best movie of 2016?</code> | <code>What will the best movie of 2017 be?</code> |
1199
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
1200
+ ```json
1201
+ {'loss': SparseMultipleNegativesRankingLoss(
1202
+ (model): SparseEncoder(
1203
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
1204
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
1205
+ )
1206
+ (cross_entropy_loss): CrossEntropyLoss()
1207
+ ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
1208
+ ```
1209
+
1210
+ ### Training Hyperparameters
1211
+ #### Non-Default Hyperparameters
1212
+
1213
+ - `eval_strategy`: steps
1214
+ - `per_device_train_batch_size`: 12
1215
+ - `per_device_eval_batch_size`: 12
1216
+ - `learning_rate`: 2e-05
1217
+ - `num_train_epochs`: 1
1218
+ - `bf16`: True
1219
+ - `load_best_model_at_end`: True
1220
+
1221
+ #### All Hyperparameters
1222
+ <details><summary>Click to expand</summary>
1223
+
1224
+ - `overwrite_output_dir`: False
1225
+ - `do_predict`: False
1226
+ - `eval_strategy`: steps
1227
+ - `prediction_loss_only`: True
1228
+ - `per_device_train_batch_size`: 12
1229
+ - `per_device_eval_batch_size`: 12
1230
+ - `per_gpu_train_batch_size`: None
1231
+ - `per_gpu_eval_batch_size`: None
1232
+ - `gradient_accumulation_steps`: 1
1233
+ - `eval_accumulation_steps`: None
1234
+ - `torch_empty_cache_steps`: None
1235
+ - `learning_rate`: 2e-05
1236
+ - `weight_decay`: 0.0
1237
+ - `adam_beta1`: 0.9
1238
+ - `adam_beta2`: 0.999
1239
+ - `adam_epsilon`: 1e-08
1240
+ - `max_grad_norm`: 1.0
1241
+ - `num_train_epochs`: 1
1242
+ - `max_steps`: -1
1243
+ - `lr_scheduler_type`: linear
1244
+ - `lr_scheduler_kwargs`: {}
1245
+ - `warmup_ratio`: 0.0
1246
+ - `warmup_steps`: 0
1247
+ - `log_level`: passive
1248
+ - `log_level_replica`: warning
1249
+ - `log_on_each_node`: True
1250
+ - `logging_nan_inf_filter`: True
1251
+ - `save_safetensors`: True
1252
+ - `save_on_each_node`: False
1253
+ - `save_only_model`: False
1254
+ - `restore_callback_states_from_checkpoint`: False
1255
+ - `no_cuda`: False
1256
+ - `use_cpu`: False
1257
+ - `use_mps_device`: False
1258
+ - `seed`: 42
1259
+ - `data_seed`: None
1260
+ - `jit_mode_eval`: False
1261
+ - `use_ipex`: False
1262
+ - `bf16`: True
1263
+ - `fp16`: False
1264
+ - `fp16_opt_level`: O1
1265
+ - `half_precision_backend`: auto
1266
+ - `bf16_full_eval`: False
1267
+ - `fp16_full_eval`: False
1268
+ - `tf32`: None
1269
+ - `local_rank`: 0
1270
+ - `ddp_backend`: None
1271
+ - `tpu_num_cores`: None
1272
+ - `tpu_metrics_debug`: False
1273
+ - `debug`: []
1274
+ - `dataloader_drop_last`: False
1275
+ - `dataloader_num_workers`: 0
1276
+ - `dataloader_prefetch_factor`: None
1277
+ - `past_index`: -1
1278
+ - `disable_tqdm`: False
1279
+ - `remove_unused_columns`: True
1280
+ - `label_names`: None
1281
+ - `load_best_model_at_end`: True
1282
+ - `ignore_data_skip`: False
1283
+ - `fsdp`: []
1284
+ - `fsdp_min_num_params`: 0
1285
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1286
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1287
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1288
+ - `deepspeed`: None
1289
+ - `label_smoothing_factor`: 0.0
1290
+ - `optim`: adamw_torch
1291
+ - `optim_args`: None
1292
+ - `adafactor`: False
1293
+ - `group_by_length`: False
1294
+ - `length_column_name`: length
1295
+ - `ddp_find_unused_parameters`: None
1296
+ - `ddp_bucket_cap_mb`: None
1297
+ - `ddp_broadcast_buffers`: False
1298
+ - `dataloader_pin_memory`: True
1299
+ - `dataloader_persistent_workers`: False
1300
+ - `skip_memory_metrics`: True
1301
+ - `use_legacy_prediction_loop`: False
1302
+ - `push_to_hub`: False
1303
+ - `resume_from_checkpoint`: None
1304
+ - `hub_model_id`: None
1305
+ - `hub_strategy`: every_save
1306
+ - `hub_private_repo`: None
1307
+ - `hub_always_push`: False
1308
+ - `gradient_checkpointing`: False
1309
+ - `gradient_checkpointing_kwargs`: None
1310
+ - `include_inputs_for_metrics`: False
1311
+ - `include_for_metrics`: []
1312
+ - `eval_do_concat_batches`: True
1313
+ - `fp16_backend`: auto
1314
+ - `push_to_hub_model_id`: None
1315
+ - `push_to_hub_organization`: None
1316
+ - `mp_parameters`:
1317
+ - `auto_find_batch_size`: False
1318
+ - `full_determinism`: False
1319
+ - `torchdynamo`: None
1320
+ - `ray_scope`: last
1321
+ - `ddp_timeout`: 1800
1322
+ - `torch_compile`: False
1323
+ - `torch_compile_backend`: None
1324
+ - `torch_compile_mode`: None
1325
+ - `include_tokens_per_second`: False
1326
+ - `include_num_input_tokens_seen`: False
1327
+ - `neftune_noise_alpha`: None
1328
+ - `optim_target_modules`: None
1329
+ - `batch_eval_metrics`: False
1330
+ - `eval_on_start`: False
1331
+ - `use_liger_kernel`: False
1332
+ - `eval_use_gather_object`: False
1333
+ - `average_tokens_across_devices`: False
1334
+ - `prompts`: None
1335
+ - `batch_sampler`: batch_sampler
1336
+ - `multi_dataset_batch_sampler`: proportional
1337
+
1338
+ </details>
1339
+
1340
+ ### Training Logs
1341
+ | Epoch | Step | Training Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
1342
+ |:------:|:----:|:-------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:------------------------:|:------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|:-------------------------:|
1343
+ | 0.1938 | 200 | 12.7715 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1344
+ | 0.3876 | 400 | 0.2719 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1345
+ | 0.5814 | 600 | 0.234 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1346
+ | 0.7752 | 800 | 0.2068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1347
+ | 0.9690 | 1000 | 0.2041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1348
+ | -1 | -1 | - | 0.1910 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.2890 | 0.1690 | 0.3056 | 0.9457 | 0.2640 | 0.2465 | 0.5013 | 0.3791 | 0.3864 |
1349
+
1350
+
1351
+ ### Framework Versions
1352
+ - Python: 3.9.22
1353
+ - Sentence Transformers: 4.2.0.dev0
1354
+ - Transformers: 4.52.1
1355
+ - PyTorch: 2.6.0+cu124
1356
+ - Accelerate: 1.7.0
1357
+ - Datasets: 3.6.0
1358
+ - Tokenizers: 0.21.1
1359
+
1360
+ ## Citation
1361
+
1362
+ ### BibTeX
1363
+
1364
+ #### Sentence Transformers
1365
+ ```bibtex
1366
+ @inproceedings{reimers-2019-sentence-bert,
1367
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1368
+ author = "Reimers, Nils and Gurevych, Iryna",
1369
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1370
+ month = "11",
1371
+ year = "2019",
1372
+ publisher = "Association for Computational Linguistics",
1373
+ url = "https://arxiv.org/abs/1908.10084",
1374
+ }
1375
+ ```
1376
+
1377
+ #### SpladeLoss
1378
+ ```bibtex
1379
+ @misc{formal2022distillationhardnegativesampling,
1380
+ title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
1381
+ author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
1382
+ year={2022},
1383
+ eprint={2205.04733},
1384
+ archivePrefix={arXiv},
1385
+ primaryClass={cs.IR},
1386
+ url={https://arxiv.org/abs/2205.04733},
1387
+ }
1388
+ ```
1389
+
1390
+ #### SparseMultipleNegativesRankingLoss
1391
+ ```bibtex
1392
+ @misc{henderson2017efficient,
1393
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1394
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1395
+ year={2017},
1396
+ eprint={1705.00652},
1397
+ archivePrefix={arXiv},
1398
+ primaryClass={cs.CL}
1399
+ }
1400
+ ```
1401
+
1402
+ #### FlopsLoss
1403
+ ```bibtex
1404
+ @article{paria2020minimizing,
1405
+ title={Minimizing flops to learn efficient sparse representations},
1406
+ author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
1407
+ journal={arXiv preprint arXiv:2004.05665},
1408
+ year={2020}
1409
+ }
1410
+ ```
1411
+
1412
+ <!--
1413
+ ## Glossary
1414
+
1415
+ *Clearly define terms in order to be accessible across audiences.*
1416
+ -->
1417
+
1418
+ <!--
1419
+ ## Model Card Authors
1420
+
1421
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1422
+ -->
1423
+
1424
+ <!--
1425
+ ## Model Card Contact
1426
+
1427
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1428
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "DistilBertForMaskedLM"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "dim": 768,
8
+ "dropout": 0.1,
9
+ "hidden_dim": 3072,
10
+ "initializer_range": 0.02,
11
+ "max_position_embeddings": 512,
12
+ "model_type": "distilbert",
13
+ "n_heads": 12,
14
+ "n_layers": 6,
15
+ "pad_token_id": 0,
16
+ "qa_dropout": 0.1,
17
+ "seq_classif_dropout": 0.2,
18
+ "sinusoidal_pos_embds": false,
19
+ "tie_weights_": true,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.1",
22
+ "vocab_size": 30522
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SparseEncoder",
3
+ "__version__": {
4
+ "sentence_transformers": "4.2.0.dev0",
5
+ "transformers": "4.52.1",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {},
9
+ "default_prompt_name": null,
10
+ "similarity_fn_name": "dot"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b8c9578ec3b7dc6eba96a15103f75a0e2a1d53d7a47b564231f029e5233e6e0
3
+ size 267954768
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_SpladePooling",
12
+ "type": "sentence_transformers.sparse_encoder.models.SpladePooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff