Add new SparseEncoder model
Browse files- 1_SpladePooling/config.json +5 -0
- README.md +1428 -0
- config.json +23 -0
- config_sentence_transformers.json +11 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
1_SpladePooling/config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pooling_strategy": "max",
|
3 |
+
"activation_function": "relu",
|
4 |
+
"word_embedding_dimension": 30522
|
5 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sparse-encoder
|
8 |
+
- sparse
|
9 |
+
- splade
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:99000
|
12 |
+
- loss:SpladeLoss
|
13 |
+
- loss:SparseMultipleNegativesRankingLoss
|
14 |
+
- loss:FlopsLoss
|
15 |
+
base_model: distilbert/distilbert-base-uncased
|
16 |
+
widget:
|
17 |
+
- source_sentence: Time Travel Is It Possible?
|
18 |
+
sentences:
|
19 |
+
- Why can you not accelerate to faster than light?
|
20 |
+
- Is time travel possible? If yes how
|
21 |
+
- What do you hAve to say about time travel (I am not science student but I read
|
22 |
+
it on net and its so exciting topic but still no clear idea that is it possible
|
23 |
+
or it's just a rumour)?
|
24 |
+
- source_sentence: How can one be a good product manager?
|
25 |
+
sentences:
|
26 |
+
- How Do I become a product manager?
|
27 |
+
- Can you make online friends with other people on Quora?
|
28 |
+
- How do I become a product designer?
|
29 |
+
- source_sentence: How do I start a business? Where can I get a funding in India if
|
30 |
+
I have a really good idea?
|
31 |
+
sentences:
|
32 |
+
- I have an awesome app/website idea which may get more than a billion users. But
|
33 |
+
I don't have required money and coding skills. I tried crowd-funding but didn't
|
34 |
+
help. What should I do?
|
35 |
+
- How do I get funding for my web based startup idea?
|
36 |
+
- What is the most powerful dog?
|
37 |
+
- source_sentence: What are your favorite questions asked on Quora?
|
38 |
+
sentences:
|
39 |
+
- What are your favorite Quora questions and answers?
|
40 |
+
- How do you become a Successfull Game Developer?
|
41 |
+
- Who is your favorite Quora follower?
|
42 |
+
- source_sentence: Which laptop is best under 25000 INR?
|
43 |
+
sentences:
|
44 |
+
- Why was the 1000 rupee note replaced with a 2000 rupee note?
|
45 |
+
- What is the best laptop under 45k?
|
46 |
+
- What are the best laptops under 25k?
|
47 |
+
datasets:
|
48 |
+
- sentence-transformers/quora-duplicates
|
49 |
+
pipeline_tag: feature-extraction
|
50 |
+
library_name: sentence-transformers
|
51 |
+
metrics:
|
52 |
+
- dot_accuracy@1
|
53 |
+
- dot_accuracy@3
|
54 |
+
- dot_accuracy@5
|
55 |
+
- dot_accuracy@10
|
56 |
+
- dot_precision@1
|
57 |
+
- dot_precision@3
|
58 |
+
- dot_precision@5
|
59 |
+
- dot_precision@10
|
60 |
+
- dot_recall@1
|
61 |
+
- dot_recall@3
|
62 |
+
- dot_recall@5
|
63 |
+
- dot_recall@10
|
64 |
+
- dot_ndcg@10
|
65 |
+
- dot_mrr@10
|
66 |
+
- dot_map@100
|
67 |
+
- row_non_zero_mean_query
|
68 |
+
- row_sparsity_mean_query
|
69 |
+
- row_non_zero_mean_corpus
|
70 |
+
- row_sparsity_mean_corpus
|
71 |
+
model-index:
|
72 |
+
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
73 |
+
results:
|
74 |
+
- task:
|
75 |
+
type: sparse-information-retrieval
|
76 |
+
name: Sparse Information Retrieval
|
77 |
+
dataset:
|
78 |
+
name: NanoClimateFEVER
|
79 |
+
type: NanoClimateFEVER
|
80 |
+
metrics:
|
81 |
+
- type: dot_accuracy@1
|
82 |
+
value: 0.2
|
83 |
+
name: Dot Accuracy@1
|
84 |
+
- type: dot_accuracy@3
|
85 |
+
value: 0.34
|
86 |
+
name: Dot Accuracy@3
|
87 |
+
- type: dot_accuracy@5
|
88 |
+
value: 0.38
|
89 |
+
name: Dot Accuracy@5
|
90 |
+
- type: dot_accuracy@10
|
91 |
+
value: 0.46
|
92 |
+
name: Dot Accuracy@10
|
93 |
+
- type: dot_precision@1
|
94 |
+
value: 0.2
|
95 |
+
name: Dot Precision@1
|
96 |
+
- type: dot_precision@3
|
97 |
+
value: 0.12
|
98 |
+
name: Dot Precision@3
|
99 |
+
- type: dot_precision@5
|
100 |
+
value: 0.084
|
101 |
+
name: Dot Precision@5
|
102 |
+
- type: dot_precision@10
|
103 |
+
value: 0.05800000000000001
|
104 |
+
name: Dot Precision@10
|
105 |
+
- type: dot_recall@1
|
106 |
+
value: 0.08833333333333332
|
107 |
+
name: Dot Recall@1
|
108 |
+
- type: dot_recall@3
|
109 |
+
value: 0.15333333333333332
|
110 |
+
name: Dot Recall@3
|
111 |
+
- type: dot_recall@5
|
112 |
+
value: 0.17166666666666663
|
113 |
+
name: Dot Recall@5
|
114 |
+
- type: dot_recall@10
|
115 |
+
value: 0.2223333333333333
|
116 |
+
name: Dot Recall@10
|
117 |
+
- type: dot_ndcg@10
|
118 |
+
value: 0.19096782240643292
|
119 |
+
name: Dot Ndcg@10
|
120 |
+
- type: dot_mrr@10
|
121 |
+
value: 0.27904761904761904
|
122 |
+
name: Dot Mrr@10
|
123 |
+
- type: dot_map@100
|
124 |
+
value: 0.1448665229843916
|
125 |
+
name: Dot Map@100
|
126 |
+
- type: row_non_zero_mean_query
|
127 |
+
value: 83.12000274658203
|
128 |
+
name: Row Non Zero Mean Query
|
129 |
+
- type: row_sparsity_mean_query
|
130 |
+
value: 0.997276782989502
|
131 |
+
name: Row Sparsity Mean Query
|
132 |
+
- type: row_non_zero_mean_corpus
|
133 |
+
value: 196.82540893554688
|
134 |
+
name: Row Non Zero Mean Corpus
|
135 |
+
- type: row_sparsity_mean_corpus
|
136 |
+
value: 0.9935513138771057
|
137 |
+
name: Row Sparsity Mean Corpus
|
138 |
+
- task:
|
139 |
+
type: sparse-information-retrieval
|
140 |
+
name: Sparse Information Retrieval
|
141 |
+
dataset:
|
142 |
+
name: NanoDBPedia
|
143 |
+
type: NanoDBPedia
|
144 |
+
metrics:
|
145 |
+
- type: dot_accuracy@1
|
146 |
+
value: 0.46
|
147 |
+
name: Dot Accuracy@1
|
148 |
+
- type: dot_accuracy@3
|
149 |
+
value: 0.66
|
150 |
+
name: Dot Accuracy@3
|
151 |
+
- type: dot_accuracy@5
|
152 |
+
value: 0.76
|
153 |
+
name: Dot Accuracy@5
|
154 |
+
- type: dot_accuracy@10
|
155 |
+
value: 0.82
|
156 |
+
name: Dot Accuracy@10
|
157 |
+
- type: dot_precision@1
|
158 |
+
value: 0.46
|
159 |
+
name: Dot Precision@1
|
160 |
+
- type: dot_precision@3
|
161 |
+
value: 0.4599999999999999
|
162 |
+
name: Dot Precision@3
|
163 |
+
- type: dot_precision@5
|
164 |
+
value: 0.41200000000000003
|
165 |
+
name: Dot Precision@5
|
166 |
+
- type: dot_precision@10
|
167 |
+
value: 0.34800000000000003
|
168 |
+
name: Dot Precision@10
|
169 |
+
- type: dot_recall@1
|
170 |
+
value: 0.024992243870767848
|
171 |
+
name: Dot Recall@1
|
172 |
+
- type: dot_recall@3
|
173 |
+
value: 0.08610042820194802
|
174 |
+
name: Dot Recall@3
|
175 |
+
- type: dot_recall@5
|
176 |
+
value: 0.1356349864336842
|
177 |
+
name: Dot Recall@5
|
178 |
+
- type: dot_recall@10
|
179 |
+
value: 0.2108700010340366
|
180 |
+
name: Dot Recall@10
|
181 |
+
- type: dot_ndcg@10
|
182 |
+
value: 0.4008410950979539
|
183 |
+
name: Dot Ndcg@10
|
184 |
+
- type: dot_mrr@10
|
185 |
+
value: 0.5753888888888887
|
186 |
+
name: Dot Mrr@10
|
187 |
+
- type: dot_map@100
|
188 |
+
value: 0.23475075762293293
|
189 |
+
name: Dot Map@100
|
190 |
+
- type: row_non_zero_mean_query
|
191 |
+
value: 110.18000030517578
|
192 |
+
name: Row Non Zero Mean Query
|
193 |
+
- type: row_sparsity_mean_query
|
194 |
+
value: 0.9963901042938232
|
195 |
+
name: Row Sparsity Mean Query
|
196 |
+
- type: row_non_zero_mean_corpus
|
197 |
+
value: 146.9065399169922
|
198 |
+
name: Row Non Zero Mean Corpus
|
199 |
+
- type: row_sparsity_mean_corpus
|
200 |
+
value: 0.9951868057250977
|
201 |
+
name: Row Sparsity Mean Corpus
|
202 |
+
- task:
|
203 |
+
type: sparse-information-retrieval
|
204 |
+
name: Sparse Information Retrieval
|
205 |
+
dataset:
|
206 |
+
name: NanoFEVER
|
207 |
+
type: NanoFEVER
|
208 |
+
metrics:
|
209 |
+
- type: dot_accuracy@1
|
210 |
+
value: 0.56
|
211 |
+
name: Dot Accuracy@1
|
212 |
+
- type: dot_accuracy@3
|
213 |
+
value: 0.64
|
214 |
+
name: Dot Accuracy@3
|
215 |
+
- type: dot_accuracy@5
|
216 |
+
value: 0.72
|
217 |
+
name: Dot Accuracy@5
|
218 |
+
- type: dot_accuracy@10
|
219 |
+
value: 0.82
|
220 |
+
name: Dot Accuracy@10
|
221 |
+
- type: dot_precision@1
|
222 |
+
value: 0.56
|
223 |
+
name: Dot Precision@1
|
224 |
+
- type: dot_precision@3
|
225 |
+
value: 0.2333333333333333
|
226 |
+
name: Dot Precision@3
|
227 |
+
- type: dot_precision@5
|
228 |
+
value: 0.15600000000000003
|
229 |
+
name: Dot Precision@5
|
230 |
+
- type: dot_precision@10
|
231 |
+
value: 0.088
|
232 |
+
name: Dot Precision@10
|
233 |
+
- type: dot_recall@1
|
234 |
+
value: 0.5266666666666666
|
235 |
+
name: Dot Recall@1
|
236 |
+
- type: dot_recall@3
|
237 |
+
value: 0.6333333333333333
|
238 |
+
name: Dot Recall@3
|
239 |
+
- type: dot_recall@5
|
240 |
+
value: 0.7133333333333333
|
241 |
+
name: Dot Recall@5
|
242 |
+
- type: dot_recall@10
|
243 |
+
value: 0.8133333333333332
|
244 |
+
name: Dot Recall@10
|
245 |
+
- type: dot_ndcg@10
|
246 |
+
value: 0.6697436984572378
|
247 |
+
name: Dot Ndcg@10
|
248 |
+
- type: dot_mrr@10
|
249 |
+
value: 0.6316349206349205
|
250 |
+
name: Dot Mrr@10
|
251 |
+
- type: dot_map@100
|
252 |
+
value: 0.6281723194238796
|
253 |
+
name: Dot Map@100
|
254 |
+
- type: row_non_zero_mean_query
|
255 |
+
value: 96.77999877929688
|
256 |
+
name: Row Non Zero Mean Query
|
257 |
+
- type: row_sparsity_mean_query
|
258 |
+
value: 0.9968292117118835
|
259 |
+
name: Row Sparsity Mean Query
|
260 |
+
- type: row_non_zero_mean_corpus
|
261 |
+
value: 219.1212921142578
|
262 |
+
name: Row Non Zero Mean Corpus
|
263 |
+
- type: row_sparsity_mean_corpus
|
264 |
+
value: 0.9928209185600281
|
265 |
+
name: Row Sparsity Mean Corpus
|
266 |
+
- task:
|
267 |
+
type: sparse-information-retrieval
|
268 |
+
name: Sparse Information Retrieval
|
269 |
+
dataset:
|
270 |
+
name: NanoFiQA2018
|
271 |
+
type: NanoFiQA2018
|
272 |
+
metrics:
|
273 |
+
- type: dot_accuracy@1
|
274 |
+
value: 0.14
|
275 |
+
name: Dot Accuracy@1
|
276 |
+
- type: dot_accuracy@3
|
277 |
+
value: 0.32
|
278 |
+
name: Dot Accuracy@3
|
279 |
+
- type: dot_accuracy@5
|
280 |
+
value: 0.36
|
281 |
+
name: Dot Accuracy@5
|
282 |
+
- type: dot_accuracy@10
|
283 |
+
value: 0.44
|
284 |
+
name: Dot Accuracy@10
|
285 |
+
- type: dot_precision@1
|
286 |
+
value: 0.14
|
287 |
+
name: Dot Precision@1
|
288 |
+
- type: dot_precision@3
|
289 |
+
value: 0.12
|
290 |
+
name: Dot Precision@3
|
291 |
+
- type: dot_precision@5
|
292 |
+
value: 0.10400000000000001
|
293 |
+
name: Dot Precision@5
|
294 |
+
- type: dot_precision@10
|
295 |
+
value: 0.068
|
296 |
+
name: Dot Precision@10
|
297 |
+
- type: dot_recall@1
|
298 |
+
value: 0.06783333333333333
|
299 |
+
name: Dot Recall@1
|
300 |
+
- type: dot_recall@3
|
301 |
+
value: 0.14569047619047618
|
302 |
+
name: Dot Recall@3
|
303 |
+
- type: dot_recall@5
|
304 |
+
value: 0.20004761904761903
|
305 |
+
name: Dot Recall@5
|
306 |
+
- type: dot_recall@10
|
307 |
+
value: 0.2636825396825397
|
308 |
+
name: Dot Recall@10
|
309 |
+
- type: dot_ndcg@10
|
310 |
+
value: 0.19745078204560165
|
311 |
+
name: Dot Ndcg@10
|
312 |
+
- type: dot_mrr@10
|
313 |
+
value: 0.23552380952380955
|
314 |
+
name: Dot Mrr@10
|
315 |
+
- type: dot_map@100
|
316 |
+
value: 0.14731140504396462
|
317 |
+
name: Dot Map@100
|
318 |
+
- type: row_non_zero_mean_query
|
319 |
+
value: 80.33999633789062
|
320 |
+
name: Row Non Zero Mean Query
|
321 |
+
- type: row_sparsity_mean_query
|
322 |
+
value: 0.9973678588867188
|
323 |
+
name: Row Sparsity Mean Query
|
324 |
+
- type: row_non_zero_mean_corpus
|
325 |
+
value: 125.915771484375
|
326 |
+
name: Row Non Zero Mean Corpus
|
327 |
+
- type: row_sparsity_mean_corpus
|
328 |
+
value: 0.9958745241165161
|
329 |
+
name: Row Sparsity Mean Corpus
|
330 |
+
- task:
|
331 |
+
type: sparse-information-retrieval
|
332 |
+
name: Sparse Information Retrieval
|
333 |
+
dataset:
|
334 |
+
name: NanoHotpotQA
|
335 |
+
type: NanoHotpotQA
|
336 |
+
metrics:
|
337 |
+
- type: dot_accuracy@1
|
338 |
+
value: 0.46
|
339 |
+
name: Dot Accuracy@1
|
340 |
+
- type: dot_accuracy@3
|
341 |
+
value: 0.66
|
342 |
+
name: Dot Accuracy@3
|
343 |
+
- type: dot_accuracy@5
|
344 |
+
value: 0.72
|
345 |
+
name: Dot Accuracy@5
|
346 |
+
- type: dot_accuracy@10
|
347 |
+
value: 0.84
|
348 |
+
name: Dot Accuracy@10
|
349 |
+
- type: dot_precision@1
|
350 |
+
value: 0.46
|
351 |
+
name: Dot Precision@1
|
352 |
+
- type: dot_precision@3
|
353 |
+
value: 0.25333333333333335
|
354 |
+
name: Dot Precision@3
|
355 |
+
- type: dot_precision@5
|
356 |
+
value: 0.176
|
357 |
+
name: Dot Precision@5
|
358 |
+
- type: dot_precision@10
|
359 |
+
value: 0.11
|
360 |
+
name: Dot Precision@10
|
361 |
+
- type: dot_recall@1
|
362 |
+
value: 0.23
|
363 |
+
name: Dot Recall@1
|
364 |
+
- type: dot_recall@3
|
365 |
+
value: 0.38
|
366 |
+
name: Dot Recall@3
|
367 |
+
- type: dot_recall@5
|
368 |
+
value: 0.44
|
369 |
+
name: Dot Recall@5
|
370 |
+
- type: dot_recall@10
|
371 |
+
value: 0.55
|
372 |
+
name: Dot Recall@10
|
373 |
+
- type: dot_ndcg@10
|
374 |
+
value: 0.4642094806420616
|
375 |
+
name: Dot Ndcg@10
|
376 |
+
- type: dot_mrr@10
|
377 |
+
value: 0.5762777777777778
|
378 |
+
name: Dot Mrr@10
|
379 |
+
- type: dot_map@100
|
380 |
+
value: 0.3781729878529178
|
381 |
+
name: Dot Map@100
|
382 |
+
- type: row_non_zero_mean_query
|
383 |
+
value: 87.26000213623047
|
384 |
+
name: Row Non Zero Mean Query
|
385 |
+
- type: row_sparsity_mean_query
|
386 |
+
value: 0.9971410632133484
|
387 |
+
name: Row Sparsity Mean Query
|
388 |
+
- type: row_non_zero_mean_corpus
|
389 |
+
value: 166.47190856933594
|
390 |
+
name: Row Non Zero Mean Corpus
|
391 |
+
- type: row_sparsity_mean_corpus
|
392 |
+
value: 0.9945458173751831
|
393 |
+
name: Row Sparsity Mean Corpus
|
394 |
+
- task:
|
395 |
+
type: sparse-information-retrieval
|
396 |
+
name: Sparse Information Retrieval
|
397 |
+
dataset:
|
398 |
+
name: NanoMSMARCO
|
399 |
+
type: NanoMSMARCO
|
400 |
+
metrics:
|
401 |
+
- type: dot_accuracy@1
|
402 |
+
value: 0.16
|
403 |
+
name: Dot Accuracy@1
|
404 |
+
- type: dot_accuracy@3
|
405 |
+
value: 0.26
|
406 |
+
name: Dot Accuracy@3
|
407 |
+
- type: dot_accuracy@5
|
408 |
+
value: 0.36
|
409 |
+
name: Dot Accuracy@5
|
410 |
+
- type: dot_accuracy@10
|
411 |
+
value: 0.46
|
412 |
+
name: Dot Accuracy@10
|
413 |
+
- type: dot_precision@1
|
414 |
+
value: 0.16
|
415 |
+
name: Dot Precision@1
|
416 |
+
- type: dot_precision@3
|
417 |
+
value: 0.08666666666666666
|
418 |
+
name: Dot Precision@3
|
419 |
+
- type: dot_precision@5
|
420 |
+
value: 0.07200000000000001
|
421 |
+
name: Dot Precision@5
|
422 |
+
- type: dot_precision@10
|
423 |
+
value: 0.046000000000000006
|
424 |
+
name: Dot Precision@10
|
425 |
+
- type: dot_recall@1
|
426 |
+
value: 0.16
|
427 |
+
name: Dot Recall@1
|
428 |
+
- type: dot_recall@3
|
429 |
+
value: 0.26
|
430 |
+
name: Dot Recall@3
|
431 |
+
- type: dot_recall@5
|
432 |
+
value: 0.36
|
433 |
+
name: Dot Recall@5
|
434 |
+
- type: dot_recall@10
|
435 |
+
value: 0.46
|
436 |
+
name: Dot Recall@10
|
437 |
+
- type: dot_ndcg@10
|
438 |
+
value: 0.2889744107825637
|
439 |
+
name: Dot Ndcg@10
|
440 |
+
- type: dot_mrr@10
|
441 |
+
value: 0.23699999999999996
|
442 |
+
name: Dot Mrr@10
|
443 |
+
- type: dot_map@100
|
444 |
+
value: 0.2547054047317205
|
445 |
+
name: Dot Map@100
|
446 |
+
- type: row_non_zero_mean_query
|
447 |
+
value: 96.05999755859375
|
448 |
+
name: Row Non Zero Mean Query
|
449 |
+
- type: row_sparsity_mean_query
|
450 |
+
value: 0.996852695941925
|
451 |
+
name: Row Sparsity Mean Query
|
452 |
+
- type: row_non_zero_mean_corpus
|
453 |
+
value: 105.46202850341797
|
454 |
+
name: Row Non Zero Mean Corpus
|
455 |
+
- type: row_sparsity_mean_corpus
|
456 |
+
value: 0.9965446591377258
|
457 |
+
name: Row Sparsity Mean Corpus
|
458 |
+
- task:
|
459 |
+
type: sparse-information-retrieval
|
460 |
+
name: Sparse Information Retrieval
|
461 |
+
dataset:
|
462 |
+
name: NanoNFCorpus
|
463 |
+
type: NanoNFCorpus
|
464 |
+
metrics:
|
465 |
+
- type: dot_accuracy@1
|
466 |
+
value: 0.28
|
467 |
+
name: Dot Accuracy@1
|
468 |
+
- type: dot_accuracy@3
|
469 |
+
value: 0.36
|
470 |
+
name: Dot Accuracy@3
|
471 |
+
- type: dot_accuracy@5
|
472 |
+
value: 0.4
|
473 |
+
name: Dot Accuracy@5
|
474 |
+
- type: dot_accuracy@10
|
475 |
+
value: 0.44
|
476 |
+
name: Dot Accuracy@10
|
477 |
+
- type: dot_precision@1
|
478 |
+
value: 0.28
|
479 |
+
name: Dot Precision@1
|
480 |
+
- type: dot_precision@3
|
481 |
+
value: 0.18666666666666665
|
482 |
+
name: Dot Precision@3
|
483 |
+
- type: dot_precision@5
|
484 |
+
value: 0.18
|
485 |
+
name: Dot Precision@5
|
486 |
+
- type: dot_precision@10
|
487 |
+
value: 0.14800000000000002
|
488 |
+
name: Dot Precision@10
|
489 |
+
- type: dot_recall@1
|
490 |
+
value: 0.01004738213752895
|
491 |
+
name: Dot Recall@1
|
492 |
+
- type: dot_recall@3
|
493 |
+
value: 0.017620026805744985
|
494 |
+
name: Dot Recall@3
|
495 |
+
- type: dot_recall@5
|
496 |
+
value: 0.031161291315801767
|
497 |
+
name: Dot Recall@5
|
498 |
+
- type: dot_recall@10
|
499 |
+
value: 0.04364801295748046
|
500 |
+
name: Dot Recall@10
|
501 |
+
- type: dot_ndcg@10
|
502 |
+
value: 0.16900908943281664
|
503 |
+
name: Dot Ndcg@10
|
504 |
+
- type: dot_mrr@10
|
505 |
+
value: 0.3281666666666666
|
506 |
+
name: Dot Mrr@10
|
507 |
+
- type: dot_map@100
|
508 |
+
value: 0.04873203232918475
|
509 |
+
name: Dot Map@100
|
510 |
+
- type: row_non_zero_mean_query
|
511 |
+
value: 122.94000244140625
|
512 |
+
name: Row Non Zero Mean Query
|
513 |
+
- type: row_sparsity_mean_query
|
514 |
+
value: 0.9959720373153687
|
515 |
+
name: Row Sparsity Mean Query
|
516 |
+
- type: row_non_zero_mean_corpus
|
517 |
+
value: 199.5936279296875
|
518 |
+
name: Row Non Zero Mean Corpus
|
519 |
+
- type: row_sparsity_mean_corpus
|
520 |
+
value: 0.9934607744216919
|
521 |
+
name: Row Sparsity Mean Corpus
|
522 |
+
- task:
|
523 |
+
type: sparse-information-retrieval
|
524 |
+
name: Sparse Information Retrieval
|
525 |
+
dataset:
|
526 |
+
name: NanoNQ
|
527 |
+
type: NanoNQ
|
528 |
+
metrics:
|
529 |
+
- type: dot_accuracy@1
|
530 |
+
value: 0.18
|
531 |
+
name: Dot Accuracy@1
|
532 |
+
- type: dot_accuracy@3
|
533 |
+
value: 0.34
|
534 |
+
name: Dot Accuracy@3
|
535 |
+
- type: dot_accuracy@5
|
536 |
+
value: 0.4
|
537 |
+
name: Dot Accuracy@5
|
538 |
+
- type: dot_accuracy@10
|
539 |
+
value: 0.48
|
540 |
+
name: Dot Accuracy@10
|
541 |
+
- type: dot_precision@1
|
542 |
+
value: 0.18
|
543 |
+
name: Dot Precision@1
|
544 |
+
- type: dot_precision@3
|
545 |
+
value: 0.11333333333333333
|
546 |
+
name: Dot Precision@3
|
547 |
+
- type: dot_precision@5
|
548 |
+
value: 0.08
|
549 |
+
name: Dot Precision@5
|
550 |
+
- type: dot_precision@10
|
551 |
+
value: 0.04800000000000001
|
552 |
+
name: Dot Precision@10
|
553 |
+
- type: dot_recall@1
|
554 |
+
value: 0.17
|
555 |
+
name: Dot Recall@1
|
556 |
+
- type: dot_recall@3
|
557 |
+
value: 0.32
|
558 |
+
name: Dot Recall@3
|
559 |
+
- type: dot_recall@5
|
560 |
+
value: 0.38
|
561 |
+
name: Dot Recall@5
|
562 |
+
- type: dot_recall@10
|
563 |
+
value: 0.46
|
564 |
+
name: Dot Recall@10
|
565 |
+
- type: dot_ndcg@10
|
566 |
+
value: 0.30557584177037744
|
567 |
+
name: Dot Ndcg@10
|
568 |
+
- type: dot_mrr@10
|
569 |
+
value: 0.26749206349206345
|
570 |
+
name: Dot Mrr@10
|
571 |
+
- type: dot_map@100
|
572 |
+
value: 0.26111102151483273
|
573 |
+
name: Dot Map@100
|
574 |
+
- type: row_non_zero_mean_query
|
575 |
+
value: 79.22000122070312
|
576 |
+
name: Row Non Zero Mean Query
|
577 |
+
- type: row_sparsity_mean_query
|
578 |
+
value: 0.9974044561386108
|
579 |
+
name: Row Sparsity Mean Query
|
580 |
+
- type: row_non_zero_mean_corpus
|
581 |
+
value: 145.250244140625
|
582 |
+
name: Row Non Zero Mean Corpus
|
583 |
+
- type: row_sparsity_mean_corpus
|
584 |
+
value: 0.995241105556488
|
585 |
+
name: Row Sparsity Mean Corpus
|
586 |
+
- task:
|
587 |
+
type: sparse-information-retrieval
|
588 |
+
name: Sparse Information Retrieval
|
589 |
+
dataset:
|
590 |
+
name: NanoQuoraRetrieval
|
591 |
+
type: NanoQuoraRetrieval
|
592 |
+
metrics:
|
593 |
+
- type: dot_accuracy@1
|
594 |
+
value: 0.92
|
595 |
+
name: Dot Accuracy@1
|
596 |
+
- type: dot_accuracy@3
|
597 |
+
value: 0.96
|
598 |
+
name: Dot Accuracy@3
|
599 |
+
- type: dot_accuracy@5
|
600 |
+
value: 1.0
|
601 |
+
name: Dot Accuracy@5
|
602 |
+
- type: dot_accuracy@10
|
603 |
+
value: 1.0
|
604 |
+
name: Dot Accuracy@10
|
605 |
+
- type: dot_precision@1
|
606 |
+
value: 0.92
|
607 |
+
name: Dot Precision@1
|
608 |
+
- type: dot_precision@3
|
609 |
+
value: 0.3733333333333333
|
610 |
+
name: Dot Precision@3
|
611 |
+
- type: dot_precision@5
|
612 |
+
value: 0.256
|
613 |
+
name: Dot Precision@5
|
614 |
+
- type: dot_precision@10
|
615 |
+
value: 0.132
|
616 |
+
name: Dot Precision@10
|
617 |
+
- type: dot_recall@1
|
618 |
+
value: 0.8206666666666667
|
619 |
+
name: Dot Recall@1
|
620 |
+
- type: dot_recall@3
|
621 |
+
value: 0.8986666666666667
|
622 |
+
name: Dot Recall@3
|
623 |
+
- type: dot_recall@5
|
624 |
+
value: 0.9726666666666667
|
625 |
+
name: Dot Recall@5
|
626 |
+
- type: dot_recall@10
|
627 |
+
value: 0.9826666666666667
|
628 |
+
name: Dot Recall@10
|
629 |
+
- type: dot_ndcg@10
|
630 |
+
value: 0.9456812009077233
|
631 |
+
name: Dot Ndcg@10
|
632 |
+
- type: dot_mrr@10
|
633 |
+
value: 0.95
|
634 |
+
name: Dot Mrr@10
|
635 |
+
- type: dot_map@100
|
636 |
+
value: 0.9232605046294702
|
637 |
+
name: Dot Map@100
|
638 |
+
- type: row_non_zero_mean_query
|
639 |
+
value: 73.83999633789062
|
640 |
+
name: Row Non Zero Mean Query
|
641 |
+
- type: row_sparsity_mean_query
|
642 |
+
value: 0.9975807070732117
|
643 |
+
name: Row Sparsity Mean Query
|
644 |
+
- type: row_non_zero_mean_corpus
|
645 |
+
value: 74.96769714355469
|
646 |
+
name: Row Non Zero Mean Corpus
|
647 |
+
- type: row_sparsity_mean_corpus
|
648 |
+
value: 0.9975438117980957
|
649 |
+
name: Row Sparsity Mean Corpus
|
650 |
+
- task:
|
651 |
+
type: sparse-information-retrieval
|
652 |
+
name: Sparse Information Retrieval
|
653 |
+
dataset:
|
654 |
+
name: NanoSCIDOCS
|
655 |
+
type: NanoSCIDOCS
|
656 |
+
metrics:
|
657 |
+
- type: dot_accuracy@1
|
658 |
+
value: 0.36
|
659 |
+
name: Dot Accuracy@1
|
660 |
+
- type: dot_accuracy@3
|
661 |
+
value: 0.5
|
662 |
+
name: Dot Accuracy@3
|
663 |
+
- type: dot_accuracy@5
|
664 |
+
value: 0.62
|
665 |
+
name: Dot Accuracy@5
|
666 |
+
- type: dot_accuracy@10
|
667 |
+
value: 0.7
|
668 |
+
name: Dot Accuracy@10
|
669 |
+
- type: dot_precision@1
|
670 |
+
value: 0.36
|
671 |
+
name: Dot Precision@1
|
672 |
+
- type: dot_precision@3
|
673 |
+
value: 0.26
|
674 |
+
name: Dot Precision@3
|
675 |
+
- type: dot_precision@5
|
676 |
+
value: 0.19199999999999995
|
677 |
+
name: Dot Precision@5
|
678 |
+
- type: dot_precision@10
|
679 |
+
value: 0.12399999999999999
|
680 |
+
name: Dot Precision@10
|
681 |
+
- type: dot_recall@1
|
682 |
+
value: 0.07666666666666666
|
683 |
+
name: Dot Recall@1
|
684 |
+
- type: dot_recall@3
|
685 |
+
value: 0.16166666666666665
|
686 |
+
name: Dot Recall@3
|
687 |
+
- type: dot_recall@5
|
688 |
+
value: 0.19766666666666666
|
689 |
+
name: Dot Recall@5
|
690 |
+
- type: dot_recall@10
|
691 |
+
value: 0.25466666666666665
|
692 |
+
name: Dot Recall@10
|
693 |
+
- type: dot_ndcg@10
|
694 |
+
value: 0.2640445339047696
|
695 |
+
name: Dot Ndcg@10
|
696 |
+
- type: dot_mrr@10
|
697 |
+
value: 0.45502380952380955
|
698 |
+
name: Dot Mrr@10
|
699 |
+
- type: dot_map@100
|
700 |
+
value: 0.18681370322897212
|
701 |
+
name: Dot Map@100
|
702 |
+
- type: row_non_zero_mean_query
|
703 |
+
value: 95.91999816894531
|
704 |
+
name: Row Non Zero Mean Query
|
705 |
+
- type: row_sparsity_mean_query
|
706 |
+
value: 0.9968574047088623
|
707 |
+
name: Row Sparsity Mean Query
|
708 |
+
- type: row_non_zero_mean_corpus
|
709 |
+
value: 184.44908142089844
|
710 |
+
name: Row Non Zero Mean Corpus
|
711 |
+
- type: row_sparsity_mean_corpus
|
712 |
+
value: 0.9939568638801575
|
713 |
+
name: Row Sparsity Mean Corpus
|
714 |
+
- task:
|
715 |
+
type: sparse-information-retrieval
|
716 |
+
name: Sparse Information Retrieval
|
717 |
+
dataset:
|
718 |
+
name: NanoArguAna
|
719 |
+
type: NanoArguAna
|
720 |
+
metrics:
|
721 |
+
- type: dot_accuracy@1
|
722 |
+
value: 0.1
|
723 |
+
name: Dot Accuracy@1
|
724 |
+
- type: dot_accuracy@3
|
725 |
+
value: 0.28
|
726 |
+
name: Dot Accuracy@3
|
727 |
+
- type: dot_accuracy@5
|
728 |
+
value: 0.32
|
729 |
+
name: Dot Accuracy@5
|
730 |
+
- type: dot_accuracy@10
|
731 |
+
value: 0.38
|
732 |
+
name: Dot Accuracy@10
|
733 |
+
- type: dot_precision@1
|
734 |
+
value: 0.1
|
735 |
+
name: Dot Precision@1
|
736 |
+
- type: dot_precision@3
|
737 |
+
value: 0.09333333333333332
|
738 |
+
name: Dot Precision@3
|
739 |
+
- type: dot_precision@5
|
740 |
+
value: 0.064
|
741 |
+
name: Dot Precision@5
|
742 |
+
- type: dot_precision@10
|
743 |
+
value: 0.038000000000000006
|
744 |
+
name: Dot Precision@10
|
745 |
+
- type: dot_recall@1
|
746 |
+
value: 0.1
|
747 |
+
name: Dot Recall@1
|
748 |
+
- type: dot_recall@3
|
749 |
+
value: 0.28
|
750 |
+
name: Dot Recall@3
|
751 |
+
- type: dot_recall@5
|
752 |
+
value: 0.32
|
753 |
+
name: Dot Recall@5
|
754 |
+
- type: dot_recall@10
|
755 |
+
value: 0.38
|
756 |
+
name: Dot Recall@10
|
757 |
+
- type: dot_ndcg@10
|
758 |
+
value: 0.24652298080535653
|
759 |
+
name: Dot Ndcg@10
|
760 |
+
- type: dot_mrr@10
|
761 |
+
value: 0.2033571428571429
|
762 |
+
name: Dot Mrr@10
|
763 |
+
- type: dot_map@100
|
764 |
+
value: 0.2089304613637203
|
765 |
+
name: Dot Map@100
|
766 |
+
- type: row_non_zero_mean_query
|
767 |
+
value: 181.27999877929688
|
768 |
+
name: Row Non Zero Mean Query
|
769 |
+
- type: row_sparsity_mean_query
|
770 |
+
value: 0.9940606951713562
|
771 |
+
name: Row Sparsity Mean Query
|
772 |
+
- type: row_non_zero_mean_corpus
|
773 |
+
value: 160.55982971191406
|
774 |
+
name: Row Non Zero Mean Corpus
|
775 |
+
- type: row_sparsity_mean_corpus
|
776 |
+
value: 0.9947395324707031
|
777 |
+
name: Row Sparsity Mean Corpus
|
778 |
+
- task:
|
779 |
+
type: sparse-information-retrieval
|
780 |
+
name: Sparse Information Retrieval
|
781 |
+
dataset:
|
782 |
+
name: NanoSciFact
|
783 |
+
type: NanoSciFact
|
784 |
+
metrics:
|
785 |
+
- type: dot_accuracy@1
|
786 |
+
value: 0.38
|
787 |
+
name: Dot Accuracy@1
|
788 |
+
- type: dot_accuracy@3
|
789 |
+
value: 0.56
|
790 |
+
name: Dot Accuracy@3
|
791 |
+
- type: dot_accuracy@5
|
792 |
+
value: 0.64
|
793 |
+
name: Dot Accuracy@5
|
794 |
+
- type: dot_accuracy@10
|
795 |
+
value: 0.66
|
796 |
+
name: Dot Accuracy@10
|
797 |
+
- type: dot_precision@1
|
798 |
+
value: 0.38
|
799 |
+
name: Dot Precision@1
|
800 |
+
- type: dot_precision@3
|
801 |
+
value: 0.19333333333333333
|
802 |
+
name: Dot Precision@3
|
803 |
+
- type: dot_precision@5
|
804 |
+
value: 0.14
|
805 |
+
name: Dot Precision@5
|
806 |
+
- type: dot_precision@10
|
807 |
+
value: 0.07200000000000001
|
808 |
+
name: Dot Precision@10
|
809 |
+
- type: dot_recall@1
|
810 |
+
value: 0.365
|
811 |
+
name: Dot Recall@1
|
812 |
+
- type: dot_recall@3
|
813 |
+
value: 0.54
|
814 |
+
name: Dot Recall@3
|
815 |
+
- type: dot_recall@5
|
816 |
+
value: 0.61
|
817 |
+
name: Dot Recall@5
|
818 |
+
- type: dot_recall@10
|
819 |
+
value: 0.63
|
820 |
+
name: Dot Recall@10
|
821 |
+
- type: dot_ndcg@10
|
822 |
+
value: 0.5012811403788975
|
823 |
+
name: Dot Ndcg@10
|
824 |
+
- type: dot_mrr@10
|
825 |
+
value: 0.4666666666666666
|
826 |
+
name: Dot Mrr@10
|
827 |
+
- type: dot_map@100
|
828 |
+
value: 0.4647112383054177
|
829 |
+
name: Dot Map@100
|
830 |
+
- type: row_non_zero_mean_query
|
831 |
+
value: 90.80000305175781
|
832 |
+
name: Row Non Zero Mean Query
|
833 |
+
- type: row_sparsity_mean_query
|
834 |
+
value: 0.9970251321792603
|
835 |
+
name: Row Sparsity Mean Query
|
836 |
+
- type: row_non_zero_mean_corpus
|
837 |
+
value: 197.8948211669922
|
838 |
+
name: Row Non Zero Mean Corpus
|
839 |
+
- type: row_sparsity_mean_corpus
|
840 |
+
value: 0.9935163259506226
|
841 |
+
name: Row Sparsity Mean Corpus
|
842 |
+
- task:
|
843 |
+
type: sparse-information-retrieval
|
844 |
+
name: Sparse Information Retrieval
|
845 |
+
dataset:
|
846 |
+
name: NanoTouche2020
|
847 |
+
type: NanoTouche2020
|
848 |
+
metrics:
|
849 |
+
- type: dot_accuracy@1
|
850 |
+
value: 0.4897959183673469
|
851 |
+
name: Dot Accuracy@1
|
852 |
+
- type: dot_accuracy@3
|
853 |
+
value: 0.7551020408163265
|
854 |
+
name: Dot Accuracy@3
|
855 |
+
- type: dot_accuracy@5
|
856 |
+
value: 0.8367346938775511
|
857 |
+
name: Dot Accuracy@5
|
858 |
+
- type: dot_accuracy@10
|
859 |
+
value: 0.9387755102040817
|
860 |
+
name: Dot Accuracy@10
|
861 |
+
- type: dot_precision@1
|
862 |
+
value: 0.4897959183673469
|
863 |
+
name: Dot Precision@1
|
864 |
+
- type: dot_precision@3
|
865 |
+
value: 0.43537414965986393
|
866 |
+
name: Dot Precision@3
|
867 |
+
- type: dot_precision@5
|
868 |
+
value: 0.42857142857142855
|
869 |
+
name: Dot Precision@5
|
870 |
+
- type: dot_precision@10
|
871 |
+
value: 0.336734693877551
|
872 |
+
name: Dot Precision@10
|
873 |
+
- type: dot_recall@1
|
874 |
+
value: 0.03231843040459851
|
875 |
+
name: Dot Recall@1
|
876 |
+
- type: dot_recall@3
|
877 |
+
value: 0.08325211008018112
|
878 |
+
name: Dot Recall@3
|
879 |
+
- type: dot_recall@5
|
880 |
+
value: 0.13623768956747034
|
881 |
+
name: Dot Recall@5
|
882 |
+
- type: dot_recall@10
|
883 |
+
value: 0.20745266217275266
|
884 |
+
name: Dot Recall@10
|
885 |
+
- type: dot_ndcg@10
|
886 |
+
value: 0.3790647958645717
|
887 |
+
name: Dot Ndcg@10
|
888 |
+
- type: dot_mrr@10
|
889 |
+
value: 0.6323372206025266
|
890 |
+
name: Dot Mrr@10
|
891 |
+
- type: dot_map@100
|
892 |
+
value: 0.2305586843086588
|
893 |
+
name: Dot Map@100
|
894 |
+
- type: row_non_zero_mean_query
|
895 |
+
value: 78.7755126953125
|
896 |
+
name: Row Non Zero Mean Query
|
897 |
+
- type: row_sparsity_mean_query
|
898 |
+
value: 0.9974190592765808
|
899 |
+
name: Row Sparsity Mean Query
|
900 |
+
- type: row_non_zero_mean_corpus
|
901 |
+
value: 140.8109588623047
|
902 |
+
name: Row Non Zero Mean Corpus
|
903 |
+
- type: row_sparsity_mean_corpus
|
904 |
+
value: 0.9953866004943848
|
905 |
+
name: Row Sparsity Mean Corpus
|
906 |
+
- task:
|
907 |
+
type: sparse-nano-beir
|
908 |
+
name: Sparse Nano BEIR
|
909 |
+
dataset:
|
910 |
+
name: NanoBEIR mean
|
911 |
+
type: NanoBEIR_mean
|
912 |
+
metrics:
|
913 |
+
- type: dot_accuracy@1
|
914 |
+
value: 0.3607535321821036
|
915 |
+
name: Dot Accuracy@1
|
916 |
+
- type: dot_accuracy@3
|
917 |
+
value: 0.510392464678179
|
918 |
+
name: Dot Accuracy@3
|
919 |
+
- type: dot_accuracy@5
|
920 |
+
value: 0.578210361067504
|
921 |
+
name: Dot Accuracy@5
|
922 |
+
- type: dot_accuracy@10
|
923 |
+
value: 0.6491365777080063
|
924 |
+
name: Dot Accuracy@10
|
925 |
+
- type: dot_precision@1
|
926 |
+
value: 0.3607535321821036
|
927 |
+
name: Dot Precision@1
|
928 |
+
- type: dot_precision@3
|
929 |
+
value: 0.2252851909994767
|
930 |
+
name: Dot Precision@3
|
931 |
+
- type: dot_precision@5
|
932 |
+
value: 0.18035164835164832
|
933 |
+
name: Dot Precision@5
|
934 |
+
- type: dot_precision@10
|
935 |
+
value: 0.1243642072213501
|
936 |
+
name: Dot Precision@10
|
937 |
+
- type: dot_recall@1
|
938 |
+
value: 0.20557882485227402
|
939 |
+
name: Dot Recall@1
|
940 |
+
- type: dot_recall@3
|
941 |
+
value: 0.3045894647137193
|
942 |
+
name: Dot Recall@3
|
943 |
+
- type: dot_recall@5
|
944 |
+
value: 0.3591088399767622
|
945 |
+
name: Dot Recall@5
|
946 |
+
- type: dot_recall@10
|
947 |
+
value: 0.42143486275744696
|
948 |
+
name: Dot Recall@10
|
949 |
+
- type: dot_ndcg@10
|
950 |
+
value: 0.3864128363458742
|
951 |
+
name: Dot Ndcg@10
|
952 |
+
- type: dot_mrr@10
|
953 |
+
value: 0.44907050659091463
|
954 |
+
name: Dot Mrr@10
|
955 |
+
- type: dot_map@100
|
956 |
+
value: 0.31631515718000486
|
957 |
+
name: Dot Map@100
|
958 |
+
- type: row_non_zero_mean_query
|
959 |
+
value: 98.19350081223708
|
960 |
+
name: Row Non Zero Mean Query
|
961 |
+
- type: row_sparsity_mean_query
|
962 |
+
value: 0.9967828622231116
|
963 |
+
name: Row Sparsity Mean Query
|
964 |
+
- type: row_non_zero_mean_corpus
|
965 |
+
value: 158.7868622999925
|
966 |
+
name: Row Non Zero Mean Corpus
|
967 |
+
- type: row_sparsity_mean_corpus
|
968 |
+
value: 0.994797619489523
|
969 |
+
name: Row Sparsity Mean Corpus
|
970 |
+
---
|
971 |
+
|
972 |
+
# splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
973 |
+
|
974 |
+
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
975 |
+
|
976 |
+
## Model Details
|
977 |
+
|
978 |
+
### Model Description
|
979 |
+
- **Model Type:** SPLADE Sparse Encoder
|
980 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
981 |
+
- **Maximum Sequence Length:** 256 tokens
|
982 |
+
- **Output Dimensionality:** 30522 dimensions
|
983 |
+
- **Similarity Function:** Dot Product
|
984 |
+
- **Training Dataset:**
|
985 |
+
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
986 |
+
- **Language:** en
|
987 |
+
- **License:** apache-2.0
|
988 |
+
|
989 |
+
### Model Sources
|
990 |
+
|
991 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
992 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
993 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
994 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
995 |
+
|
996 |
+
### Full Model Architecture
|
997 |
+
|
998 |
+
```
|
999 |
+
SparseEncoder(
|
1000 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
1001 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
1002 |
+
)
|
1003 |
+
```
|
1004 |
+
|
1005 |
+
## Usage
|
1006 |
+
|
1007 |
+
### Direct Usage (Sentence Transformers)
|
1008 |
+
|
1009 |
+
First install the Sentence Transformers library:
|
1010 |
+
|
1011 |
+
```bash
|
1012 |
+
pip install -U sentence-transformers
|
1013 |
+
```
|
1014 |
+
|
1015 |
+
Then you can load this model and run inference.
|
1016 |
+
```python
|
1017 |
+
from sentence_transformers import SparseEncoder
|
1018 |
+
|
1019 |
+
# Download from the 🤗 Hub
|
1020 |
+
model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
|
1021 |
+
# Run inference
|
1022 |
+
sentences = [
|
1023 |
+
'Which laptop is best under 25000 INR?',
|
1024 |
+
'What are the best laptops under 25k?',
|
1025 |
+
'What is the best laptop under 45k?',
|
1026 |
+
]
|
1027 |
+
embeddings = model.encode(sentences)
|
1028 |
+
print(embeddings.shape)
|
1029 |
+
# (3, 30522)
|
1030 |
+
|
1031 |
+
# Get the similarity scores for the embeddings
|
1032 |
+
similarities = model.similarity(embeddings, embeddings)
|
1033 |
+
print(similarities.shape)
|
1034 |
+
# [3, 3]
|
1035 |
+
```
|
1036 |
+
|
1037 |
+
<!--
|
1038 |
+
### Direct Usage (Transformers)
|
1039 |
+
|
1040 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
1041 |
+
|
1042 |
+
</details>
|
1043 |
+
-->
|
1044 |
+
|
1045 |
+
<!--
|
1046 |
+
### Downstream Usage (Sentence Transformers)
|
1047 |
+
|
1048 |
+
You can finetune this model on your own dataset.
|
1049 |
+
|
1050 |
+
<details><summary>Click to expand</summary>
|
1051 |
+
|
1052 |
+
</details>
|
1053 |
+
-->
|
1054 |
+
|
1055 |
+
<!--
|
1056 |
+
### Out-of-Scope Use
|
1057 |
+
|
1058 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
1059 |
+
-->
|
1060 |
+
|
1061 |
+
## Evaluation
|
1062 |
+
|
1063 |
+
### Metrics
|
1064 |
+
|
1065 |
+
#### Sparse Information Retrieval
|
1066 |
+
|
1067 |
+
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
|
1068 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
1069 |
+
|
1070 |
+
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|
1071 |
+
|:-------------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
|
1072 |
+
| dot_accuracy@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
|
1073 |
+
| dot_accuracy@3 | 0.34 | 0.66 | 0.64 | 0.32 | 0.66 | 0.26 | 0.36 | 0.34 | 0.96 | 0.5 | 0.28 | 0.56 | 0.7551 |
|
1074 |
+
| dot_accuracy@5 | 0.38 | 0.76 | 0.72 | 0.36 | 0.72 | 0.36 | 0.4 | 0.4 | 1.0 | 0.62 | 0.32 | 0.64 | 0.8367 |
|
1075 |
+
| dot_accuracy@10 | 0.46 | 0.82 | 0.82 | 0.44 | 0.84 | 0.46 | 0.44 | 0.48 | 1.0 | 0.7 | 0.38 | 0.66 | 0.9388 |
|
1076 |
+
| dot_precision@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
|
1077 |
+
| dot_precision@3 | 0.12 | 0.46 | 0.2333 | 0.12 | 0.2533 | 0.0867 | 0.1867 | 0.1133 | 0.3733 | 0.26 | 0.0933 | 0.1933 | 0.4354 |
|
1078 |
+
| dot_precision@5 | 0.084 | 0.412 | 0.156 | 0.104 | 0.176 | 0.072 | 0.18 | 0.08 | 0.256 | 0.192 | 0.064 | 0.14 | 0.4286 |
|
1079 |
+
| dot_precision@10 | 0.058 | 0.348 | 0.088 | 0.068 | 0.11 | 0.046 | 0.148 | 0.048 | 0.132 | 0.124 | 0.038 | 0.072 | 0.3367 |
|
1080 |
+
| dot_recall@1 | 0.0883 | 0.025 | 0.5267 | 0.0678 | 0.23 | 0.16 | 0.01 | 0.17 | 0.8207 | 0.0767 | 0.1 | 0.365 | 0.0323 |
|
1081 |
+
| dot_recall@3 | 0.1533 | 0.0861 | 0.6333 | 0.1457 | 0.38 | 0.26 | 0.0176 | 0.32 | 0.8987 | 0.1617 | 0.28 | 0.54 | 0.0833 |
|
1082 |
+
| dot_recall@5 | 0.1717 | 0.1356 | 0.7133 | 0.2 | 0.44 | 0.36 | 0.0312 | 0.38 | 0.9727 | 0.1977 | 0.32 | 0.61 | 0.1362 |
|
1083 |
+
| dot_recall@10 | 0.2223 | 0.2109 | 0.8133 | 0.2637 | 0.55 | 0.46 | 0.0436 | 0.46 | 0.9827 | 0.2547 | 0.38 | 0.63 | 0.2075 |
|
1084 |
+
| **dot_ndcg@10** | **0.191** | **0.4008** | **0.6697** | **0.1975** | **0.4642** | **0.289** | **0.169** | **0.3056** | **0.9457** | **0.264** | **0.2465** | **0.5013** | **0.3791** |
|
1085 |
+
| dot_mrr@10 | 0.279 | 0.5754 | 0.6316 | 0.2355 | 0.5763 | 0.237 | 0.3282 | 0.2675 | 0.95 | 0.455 | 0.2034 | 0.4667 | 0.6323 |
|
1086 |
+
| dot_map@100 | 0.1449 | 0.2348 | 0.6282 | 0.1473 | 0.3782 | 0.2547 | 0.0487 | 0.2611 | 0.9233 | 0.1868 | 0.2089 | 0.4647 | 0.2306 |
|
1087 |
+
| row_non_zero_mean_query | 83.12 | 110.18 | 96.78 | 80.34 | 87.26 | 96.06 | 122.94 | 79.22 | 73.84 | 95.92 | 181.28 | 90.8 | 78.7755 |
|
1088 |
+
| row_sparsity_mean_query | 0.9973 | 0.9964 | 0.9968 | 0.9974 | 0.9971 | 0.9969 | 0.996 | 0.9974 | 0.9976 | 0.9969 | 0.9941 | 0.997 | 0.9974 |
|
1089 |
+
| row_non_zero_mean_corpus | 196.8254 | 146.9065 | 219.1213 | 125.9158 | 166.4719 | 105.462 | 199.5936 | 145.2502 | 74.9677 | 184.4491 | 160.5598 | 197.8948 | 140.811 |
|
1090 |
+
| row_sparsity_mean_corpus | 0.9936 | 0.9952 | 0.9928 | 0.9959 | 0.9945 | 0.9965 | 0.9935 | 0.9952 | 0.9975 | 0.994 | 0.9947 | 0.9935 | 0.9954 |
|
1091 |
+
|
1092 |
+
#### Sparse Nano BEIR
|
1093 |
+
|
1094 |
+
* Dataset: `NanoBEIR_mean`
|
1095 |
+
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
1096 |
+
```json
|
1097 |
+
{
|
1098 |
+
"dataset_names": [
|
1099 |
+
"climatefever",
|
1100 |
+
"dbpedia",
|
1101 |
+
"fever",
|
1102 |
+
"fiqa2018",
|
1103 |
+
"hotpotqa",
|
1104 |
+
"msmarco",
|
1105 |
+
"nfcorpus",
|
1106 |
+
"nq",
|
1107 |
+
"quoraretrieval",
|
1108 |
+
"scidocs",
|
1109 |
+
"arguana",
|
1110 |
+
"scifact",
|
1111 |
+
"touche2020"
|
1112 |
+
]
|
1113 |
+
}
|
1114 |
+
```
|
1115 |
+
|
1116 |
+
| Metric | Value |
|
1117 |
+
|:-------------------------|:-----------|
|
1118 |
+
| dot_accuracy@1 | 0.3608 |
|
1119 |
+
| dot_accuracy@3 | 0.5104 |
|
1120 |
+
| dot_accuracy@5 | 0.5782 |
|
1121 |
+
| dot_accuracy@10 | 0.6491 |
|
1122 |
+
| dot_precision@1 | 0.3608 |
|
1123 |
+
| dot_precision@3 | 0.2253 |
|
1124 |
+
| dot_precision@5 | 0.1804 |
|
1125 |
+
| dot_precision@10 | 0.1244 |
|
1126 |
+
| dot_recall@1 | 0.2056 |
|
1127 |
+
| dot_recall@3 | 0.3046 |
|
1128 |
+
| dot_recall@5 | 0.3591 |
|
1129 |
+
| dot_recall@10 | 0.4214 |
|
1130 |
+
| **dot_ndcg@10** | **0.3864** |
|
1131 |
+
| dot_mrr@10 | 0.4491 |
|
1132 |
+
| dot_map@100 | 0.3163 |
|
1133 |
+
| row_non_zero_mean_query | 98.1935 |
|
1134 |
+
| row_sparsity_mean_query | 0.9968 |
|
1135 |
+
| row_non_zero_mean_corpus | 158.7869 |
|
1136 |
+
| row_sparsity_mean_corpus | 0.9948 |
|
1137 |
+
|
1138 |
+
<!--
|
1139 |
+
## Bias, Risks and Limitations
|
1140 |
+
|
1141 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
1142 |
+
-->
|
1143 |
+
|
1144 |
+
<!--
|
1145 |
+
### Recommendations
|
1146 |
+
|
1147 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
1148 |
+
-->
|
1149 |
+
|
1150 |
+
## Training Details
|
1151 |
+
|
1152 |
+
### Training Dataset
|
1153 |
+
|
1154 |
+
#### quora-duplicates
|
1155 |
+
|
1156 |
+
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
1157 |
+
* Size: 99,000 training samples
|
1158 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
1159 |
+
* Approximate statistics based on the first 1000 samples:
|
1160 |
+
| | anchor | positive | negative |
|
1161 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
1162 |
+
| type | string | string | string |
|
1163 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 14.1 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.83 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.21 tokens</li><li>max: 75 tokens</li></ul> |
|
1164 |
+
* Samples:
|
1165 |
+
| anchor | positive | negative |
|
1166 |
+
|:----------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
1167 |
+
| <code>What are the best GMAT coaching institutes in Delhi NCR?</code> | <code>Which are the best GMAT coaching institutes in Delhi/NCR?</code> | <code>What are the best GMAT coaching institutes in Delhi-Noida Area?</code> |
|
1168 |
+
| <code>Is a third world war coming?</code> | <code>Is World War 3 more imminent than expected?</code> | <code>Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?</code> |
|
1169 |
+
| <code>Should I build iOS or Android apps first?</code> | <code>Should people choose Android or iOS first to build their App?</code> | <code>How much more effort is it to build your app on both iOS and Android?</code> |
|
1170 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
1171 |
+
```json
|
1172 |
+
{'loss': SparseMultipleNegativesRankingLoss(
|
1173 |
+
(model): SparseEncoder(
|
1174 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
1175 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
|
1176 |
+
)
|
1177 |
+
(cross_entropy_loss): CrossEntropyLoss()
|
1178 |
+
), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
|
1179 |
+
```
|
1180 |
+
|
1181 |
+
### Evaluation Dataset
|
1182 |
+
|
1183 |
+
#### quora-duplicates
|
1184 |
+
|
1185 |
+
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
1186 |
+
* Size: 1,000 evaluation samples
|
1187 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
1188 |
+
* Approximate statistics based on the first 1000 samples:
|
1189 |
+
| | anchor | positive | negative |
|
1190 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
1191 |
+
| type | string | string | string |
|
1192 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 14.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.56 tokens</li><li>max: 60 tokens</li></ul> |
|
1193 |
+
* Samples:
|
1194 |
+
| anchor | positive | negative |
|
1195 |
+
|:-------------------------------------------------------------------|:------------------------------------------------------------|:-----------------------------------------------------------------|
|
1196 |
+
| <code>What happens if we use petrol in diesel vehicles?</code> | <code>Why can't we use petrol in diesel?</code> | <code>Why are diesel engines noisier than petrol engines?</code> |
|
1197 |
+
| <code>Why is Saltwater taffy candy imported in Switzerland?</code> | <code>Why is Saltwater taffy candy imported in Laos?</code> | <code>Is salt a consumer product?</code> |
|
1198 |
+
| <code>Which is your favourite film in 2016?</code> | <code>What movie is the best movie of 2016?</code> | <code>What will the best movie of 2017 be?</code> |
|
1199 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
1200 |
+
```json
|
1201 |
+
{'loss': SparseMultipleNegativesRankingLoss(
|
1202 |
+
(model): SparseEncoder(
|
1203 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
1204 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
|
1205 |
+
)
|
1206 |
+
(cross_entropy_loss): CrossEntropyLoss()
|
1207 |
+
), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
|
1208 |
+
```
|
1209 |
+
|
1210 |
+
### Training Hyperparameters
|
1211 |
+
#### Non-Default Hyperparameters
|
1212 |
+
|
1213 |
+
- `eval_strategy`: steps
|
1214 |
+
- `per_device_train_batch_size`: 12
|
1215 |
+
- `per_device_eval_batch_size`: 12
|
1216 |
+
- `learning_rate`: 2e-05
|
1217 |
+
- `num_train_epochs`: 1
|
1218 |
+
- `bf16`: True
|
1219 |
+
- `load_best_model_at_end`: True
|
1220 |
+
|
1221 |
+
#### All Hyperparameters
|
1222 |
+
<details><summary>Click to expand</summary>
|
1223 |
+
|
1224 |
+
- `overwrite_output_dir`: False
|
1225 |
+
- `do_predict`: False
|
1226 |
+
- `eval_strategy`: steps
|
1227 |
+
- `prediction_loss_only`: True
|
1228 |
+
- `per_device_train_batch_size`: 12
|
1229 |
+
- `per_device_eval_batch_size`: 12
|
1230 |
+
- `per_gpu_train_batch_size`: None
|
1231 |
+
- `per_gpu_eval_batch_size`: None
|
1232 |
+
- `gradient_accumulation_steps`: 1
|
1233 |
+
- `eval_accumulation_steps`: None
|
1234 |
+
- `torch_empty_cache_steps`: None
|
1235 |
+
- `learning_rate`: 2e-05
|
1236 |
+
- `weight_decay`: 0.0
|
1237 |
+
- `adam_beta1`: 0.9
|
1238 |
+
- `adam_beta2`: 0.999
|
1239 |
+
- `adam_epsilon`: 1e-08
|
1240 |
+
- `max_grad_norm`: 1.0
|
1241 |
+
- `num_train_epochs`: 1
|
1242 |
+
- `max_steps`: -1
|
1243 |
+
- `lr_scheduler_type`: linear
|
1244 |
+
- `lr_scheduler_kwargs`: {}
|
1245 |
+
- `warmup_ratio`: 0.0
|
1246 |
+
- `warmup_steps`: 0
|
1247 |
+
- `log_level`: passive
|
1248 |
+
- `log_level_replica`: warning
|
1249 |
+
- `log_on_each_node`: True
|
1250 |
+
- `logging_nan_inf_filter`: True
|
1251 |
+
- `save_safetensors`: True
|
1252 |
+
- `save_on_each_node`: False
|
1253 |
+
- `save_only_model`: False
|
1254 |
+
- `restore_callback_states_from_checkpoint`: False
|
1255 |
+
- `no_cuda`: False
|
1256 |
+
- `use_cpu`: False
|
1257 |
+
- `use_mps_device`: False
|
1258 |
+
- `seed`: 42
|
1259 |
+
- `data_seed`: None
|
1260 |
+
- `jit_mode_eval`: False
|
1261 |
+
- `use_ipex`: False
|
1262 |
+
- `bf16`: True
|
1263 |
+
- `fp16`: False
|
1264 |
+
- `fp16_opt_level`: O1
|
1265 |
+
- `half_precision_backend`: auto
|
1266 |
+
- `bf16_full_eval`: False
|
1267 |
+
- `fp16_full_eval`: False
|
1268 |
+
- `tf32`: None
|
1269 |
+
- `local_rank`: 0
|
1270 |
+
- `ddp_backend`: None
|
1271 |
+
- `tpu_num_cores`: None
|
1272 |
+
- `tpu_metrics_debug`: False
|
1273 |
+
- `debug`: []
|
1274 |
+
- `dataloader_drop_last`: False
|
1275 |
+
- `dataloader_num_workers`: 0
|
1276 |
+
- `dataloader_prefetch_factor`: None
|
1277 |
+
- `past_index`: -1
|
1278 |
+
- `disable_tqdm`: False
|
1279 |
+
- `remove_unused_columns`: True
|
1280 |
+
- `label_names`: None
|
1281 |
+
- `load_best_model_at_end`: True
|
1282 |
+
- `ignore_data_skip`: False
|
1283 |
+
- `fsdp`: []
|
1284 |
+
- `fsdp_min_num_params`: 0
|
1285 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1286 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1287 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
1288 |
+
- `deepspeed`: None
|
1289 |
+
- `label_smoothing_factor`: 0.0
|
1290 |
+
- `optim`: adamw_torch
|
1291 |
+
- `optim_args`: None
|
1292 |
+
- `adafactor`: False
|
1293 |
+
- `group_by_length`: False
|
1294 |
+
- `length_column_name`: length
|
1295 |
+
- `ddp_find_unused_parameters`: None
|
1296 |
+
- `ddp_bucket_cap_mb`: None
|
1297 |
+
- `ddp_broadcast_buffers`: False
|
1298 |
+
- `dataloader_pin_memory`: True
|
1299 |
+
- `dataloader_persistent_workers`: False
|
1300 |
+
- `skip_memory_metrics`: True
|
1301 |
+
- `use_legacy_prediction_loop`: False
|
1302 |
+
- `push_to_hub`: False
|
1303 |
+
- `resume_from_checkpoint`: None
|
1304 |
+
- `hub_model_id`: None
|
1305 |
+
- `hub_strategy`: every_save
|
1306 |
+
- `hub_private_repo`: None
|
1307 |
+
- `hub_always_push`: False
|
1308 |
+
- `gradient_checkpointing`: False
|
1309 |
+
- `gradient_checkpointing_kwargs`: None
|
1310 |
+
- `include_inputs_for_metrics`: False
|
1311 |
+
- `include_for_metrics`: []
|
1312 |
+
- `eval_do_concat_batches`: True
|
1313 |
+
- `fp16_backend`: auto
|
1314 |
+
- `push_to_hub_model_id`: None
|
1315 |
+
- `push_to_hub_organization`: None
|
1316 |
+
- `mp_parameters`:
|
1317 |
+
- `auto_find_batch_size`: False
|
1318 |
+
- `full_determinism`: False
|
1319 |
+
- `torchdynamo`: None
|
1320 |
+
- `ray_scope`: last
|
1321 |
+
- `ddp_timeout`: 1800
|
1322 |
+
- `torch_compile`: False
|
1323 |
+
- `torch_compile_backend`: None
|
1324 |
+
- `torch_compile_mode`: None
|
1325 |
+
- `include_tokens_per_second`: False
|
1326 |
+
- `include_num_input_tokens_seen`: False
|
1327 |
+
- `neftune_noise_alpha`: None
|
1328 |
+
- `optim_target_modules`: None
|
1329 |
+
- `batch_eval_metrics`: False
|
1330 |
+
- `eval_on_start`: False
|
1331 |
+
- `use_liger_kernel`: False
|
1332 |
+
- `eval_use_gather_object`: False
|
1333 |
+
- `average_tokens_across_devices`: False
|
1334 |
+
- `prompts`: None
|
1335 |
+
- `batch_sampler`: batch_sampler
|
1336 |
+
- `multi_dataset_batch_sampler`: proportional
|
1337 |
+
|
1338 |
+
</details>
|
1339 |
+
|
1340 |
+
### Training Logs
|
1341 |
+
| Epoch | Step | Training Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|
1342 |
+
|:------:|:----:|:-------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:------------------------:|:------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|:-------------------------:|
|
1343 |
+
| 0.1938 | 200 | 12.7715 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1344 |
+
| 0.3876 | 400 | 0.2719 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1345 |
+
| 0.5814 | 600 | 0.234 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1346 |
+
| 0.7752 | 800 | 0.2068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1347 |
+
| 0.9690 | 1000 | 0.2041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1348 |
+
| -1 | -1 | - | 0.1910 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.2890 | 0.1690 | 0.3056 | 0.9457 | 0.2640 | 0.2465 | 0.5013 | 0.3791 | 0.3864 |
|
1349 |
+
|
1350 |
+
|
1351 |
+
### Framework Versions
|
1352 |
+
- Python: 3.9.22
|
1353 |
+
- Sentence Transformers: 4.2.0.dev0
|
1354 |
+
- Transformers: 4.52.1
|
1355 |
+
- PyTorch: 2.6.0+cu124
|
1356 |
+
- Accelerate: 1.7.0
|
1357 |
+
- Datasets: 3.6.0
|
1358 |
+
- Tokenizers: 0.21.1
|
1359 |
+
|
1360 |
+
## Citation
|
1361 |
+
|
1362 |
+
### BibTeX
|
1363 |
+
|
1364 |
+
#### Sentence Transformers
|
1365 |
+
```bibtex
|
1366 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1367 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1368 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1369 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1370 |
+
month = "11",
|
1371 |
+
year = "2019",
|
1372 |
+
publisher = "Association for Computational Linguistics",
|
1373 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1374 |
+
}
|
1375 |
+
```
|
1376 |
+
|
1377 |
+
#### SpladeLoss
|
1378 |
+
```bibtex
|
1379 |
+
@misc{formal2022distillationhardnegativesampling,
|
1380 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
1381 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
1382 |
+
year={2022},
|
1383 |
+
eprint={2205.04733},
|
1384 |
+
archivePrefix={arXiv},
|
1385 |
+
primaryClass={cs.IR},
|
1386 |
+
url={https://arxiv.org/abs/2205.04733},
|
1387 |
+
}
|
1388 |
+
```
|
1389 |
+
|
1390 |
+
#### SparseMultipleNegativesRankingLoss
|
1391 |
+
```bibtex
|
1392 |
+
@misc{henderson2017efficient,
|
1393 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1394 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1395 |
+
year={2017},
|
1396 |
+
eprint={1705.00652},
|
1397 |
+
archivePrefix={arXiv},
|
1398 |
+
primaryClass={cs.CL}
|
1399 |
+
}
|
1400 |
+
```
|
1401 |
+
|
1402 |
+
#### FlopsLoss
|
1403 |
+
```bibtex
|
1404 |
+
@article{paria2020minimizing,
|
1405 |
+
title={Minimizing flops to learn efficient sparse representations},
|
1406 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
1407 |
+
journal={arXiv preprint arXiv:2004.05665},
|
1408 |
+
year={2020}
|
1409 |
+
}
|
1410 |
+
```
|
1411 |
+
|
1412 |
+
<!--
|
1413 |
+
## Glossary
|
1414 |
+
|
1415 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1416 |
+
-->
|
1417 |
+
|
1418 |
+
<!--
|
1419 |
+
## Model Card Authors
|
1420 |
+
|
1421 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1422 |
+
-->
|
1423 |
+
|
1424 |
+
<!--
|
1425 |
+
## Model Card Contact
|
1426 |
+
|
1427 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1428 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"max_position_embeddings": 512,
|
12 |
+
"model_type": "distilbert",
|
13 |
+
"n_heads": 12,
|
14 |
+
"n_layers": 6,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"qa_dropout": 0.1,
|
17 |
+
"seq_classif_dropout": 0.2,
|
18 |
+
"sinusoidal_pos_embds": false,
|
19 |
+
"tie_weights_": true,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.52.1",
|
22 |
+
"vocab_size": 30522
|
23 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SparseEncoder",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "4.2.0.dev0",
|
5 |
+
"transformers": "4.52.1",
|
6 |
+
"pytorch": "2.6.0+cu124"
|
7 |
+
},
|
8 |
+
"prompts": {},
|
9 |
+
"default_prompt_name": null,
|
10 |
+
"similarity_fn_name": "dot"
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b8c9578ec3b7dc6eba96a15103f75a0e2a1d53d7a47b564231f029e5233e6e0
|
3 |
+
size 267954768
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_SpladePooling",
|
12 |
+
"type": "sentence_transformers.sparse_encoder.models.SpladePooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|