Add library name, Github repo, project page and example usage (#1)
Browse files- Add library name, Github repo, project page and example usage (9ff3286f416e6022204824e99e0ece56a72e7c06)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,12 +1,193 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
base_model:
|
6 |
- Qwen/Qwen2.5-VL-3B-Instruct
|
|
|
|
|
|
|
7 |
pipeline_tag: image-text-to-text
|
|
|
8 |
---
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
## 📄 Citation
|
11 |
If you find this work useful, please consider citing our paper:
|
12 |
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-VL-3B-Instruct
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
license: apache-2.0
|
7 |
pipeline_tag: image-text-to-text
|
8 |
+
library_name: transformers
|
9 |
---
|
10 |
|
11 |
+
This repository contains the model based on Qwen2.5-VL-3B as presented in [Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis](https://arxiv.org/abs/2505.13227).
|
12 |
+
|
13 |
+
Project page: https://osworld-grounding.github.io
|
14 |
+
|
15 |
+
For code and sample usage, see https://github.com/xlang-ai/OSWorld-G.
|
16 |
+
|
17 |
+
To use our model, we recommend using `vllm`. You need to carefully follow the computer use agent template from Qwen-2.5-VL, and be very careful with the image size to enable the best performance. We show a small example here (You can also run [`demo.py`](demo.py) to see the demo):
|
18 |
+
``` python
|
19 |
+
import json
|
20 |
+
import re
|
21 |
+
from PIL import Image, ImageDraw
|
22 |
+
from transformers import AutoTokenizer
|
23 |
+
from vllm import LLM, SamplingParams
|
24 |
+
from agent_function_call import ComputerUse
|
25 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl_fast import smart_resize
|
26 |
+
from transformers import Qwen2_5_VLProcessor
|
27 |
+
from huggingface_hub import hf_hub_download
|
28 |
+
|
29 |
+
model_path = "xlangai/Jedi-3B-1080p"
|
30 |
+
# model_path = "xlangai/Jedi-7B-1080p"
|
31 |
+
|
32 |
+
FN_CALL_TEMPLATE = """You are a helpful assistant.
|
33 |
+
|
34 |
+
# Tools
|
35 |
+
|
36 |
+
You may call one or more functions to assist with the user query.
|
37 |
+
|
38 |
+
You are provided with function signatures within <tools></tools> XML tags:
|
39 |
+
<tools>
|
40 |
+
{tool_descs}
|
41 |
+
</tools>
|
42 |
+
|
43 |
+
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
|
44 |
+
<tool_call>
|
45 |
+
{{"name": <function-name>, "arguments": <args-json-object>}}
|
46 |
+
</tool_call>"""
|
47 |
+
|
48 |
+
|
49 |
+
def visualize_click_position(image, coords, circle_radius=9, point_radius=3):
|
50 |
+
draw = ImageDraw.Draw(image)
|
51 |
+
|
52 |
+
x, y = coords
|
53 |
+
|
54 |
+
draw.ellipse(
|
55 |
+
[x - circle_radius, y - circle_radius, x + circle_radius, y + circle_radius],
|
56 |
+
outline="lightgreen",
|
57 |
+
width=2,
|
58 |
+
)
|
59 |
+
|
60 |
+
draw.ellipse(
|
61 |
+
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
|
62 |
+
fill="lightgreen",
|
63 |
+
)
|
64 |
+
|
65 |
+
return image
|
66 |
+
|
67 |
+
|
68 |
+
def parse_coordinates(response):
|
69 |
+
match = re.search(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
|
70 |
+
action = None
|
71 |
+
if not match:
|
72 |
+
raise ValueError("No <tool_call> block found in response.")
|
73 |
+
|
74 |
+
try:
|
75 |
+
action = json.loads(match.group(1))
|
76 |
+
except json.JSONDecodeError as e:
|
77 |
+
raise ValueError(f"Failed to parse tool_call JSON: {e}")
|
78 |
+
action_name = action["name"]
|
79 |
+
action_type = action["arguments"]["action"]
|
80 |
+
action_args = action["arguments"]["coordinate"]
|
81 |
+
|
82 |
+
if (
|
83 |
+
action_name != "computer_use"
|
84 |
+
or action_type
|
85 |
+
not in ("mouse_move", "left_click", "right_click", "double_click")
|
86 |
+
or action_args is None
|
87 |
+
):
|
88 |
+
print(f"Error parsing coordinates: {response}")
|
89 |
+
return None
|
90 |
+
|
91 |
+
return action_args
|
92 |
+
|
93 |
+
|
94 |
+
def main():
|
95 |
+
processor = Qwen2_5_VLProcessor.from_pretrained(model_path)
|
96 |
+
|
97 |
+
input_image = Image.open("demo_image.png")
|
98 |
+
instruction = "Open the filter function for search settings."
|
99 |
+
|
100 |
+
resized_height, resized_width = smart_resize(
|
101 |
+
input_image.height,
|
102 |
+
input_image.width,
|
103 |
+
factor=processor.image_processor.patch_size
|
104 |
+
* processor.image_processor.merge_size,
|
105 |
+
min_pixels=processor.image_processor.min_pixels,
|
106 |
+
max_pixels=processor.image_processor.max_pixels,
|
107 |
+
)
|
108 |
+
|
109 |
+
computer_use = ComputerUse(
|
110 |
+
cfg={
|
111 |
+
"display_width_px": resized_width,
|
112 |
+
"display_height_px": resized_height,
|
113 |
+
}
|
114 |
+
)
|
115 |
+
tools = [computer_use.function]
|
116 |
+
tool_descs = [{"type": "function", "function": f} for f in tools]
|
117 |
+
tool_descs = "
|
118 |
+
".join([json.dumps(f, ensure_ascii=False) for f in tool_descs])
|
119 |
+
|
120 |
+
llm = LLM(
|
121 |
+
model=model_path,
|
122 |
+
tokenizer_mode="slow",
|
123 |
+
dtype="bfloat16",
|
124 |
+
trust_remote_code=True,
|
125 |
+
)
|
126 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
127 |
+
model_path, trust_remote_code=True, use_fast=False
|
128 |
+
)
|
129 |
+
|
130 |
+
chat_template_path = hf_hub_download(
|
131 |
+
repo_id=model_path, filename="chat_template.json"
|
132 |
+
)
|
133 |
+
with open(chat_template_path, "r") as f:
|
134 |
+
tokenizer.chat_template = json.load(f)["chat_template"]
|
135 |
+
|
136 |
+
messages = [
|
137 |
+
{
|
138 |
+
"role": "system",
|
139 |
+
"content": [
|
140 |
+
{
|
141 |
+
"type": "text",
|
142 |
+
"text": FN_CALL_TEMPLATE.format(tool_descs=tool_descs),
|
143 |
+
}
|
144 |
+
],
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"role": "user",
|
148 |
+
"content": [
|
149 |
+
{
|
150 |
+
"type": "image",
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"type": "text",
|
154 |
+
"text": instruction,
|
155 |
+
},
|
156 |
+
],
|
157 |
+
},
|
158 |
+
]
|
159 |
+
sampling_params = SamplingParams(
|
160 |
+
temperature=0.01,
|
161 |
+
max_tokens=1024,
|
162 |
+
top_k=1,
|
163 |
+
)
|
164 |
+
message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
165 |
+
|
166 |
+
outputs = llm.generate(
|
167 |
+
{
|
168 |
+
"prompt_token_ids": message,
|
169 |
+
"multi_modal_data": {
|
170 |
+
"image": input_image,
|
171 |
+
},
|
172 |
+
},
|
173 |
+
sampling_params=sampling_params,
|
174 |
+
)
|
175 |
+
generated_tokens = outputs[0].outputs[0].token_ids
|
176 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
177 |
+
predicted_coords = parse_coordinates(response)
|
178 |
+
print("predicted_coords: ", predicted_coords)
|
179 |
+
|
180 |
+
if predicted_coords:
|
181 |
+
viz_image = visualize_click_position(input_image, predicted_coords)
|
182 |
+
viz_image.save("click_visualization.png")
|
183 |
+
|
184 |
+
return predicted_coords
|
185 |
+
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
main()
|
189 |
+
```
|
190 |
+
|
191 |
## 📄 Citation
|
192 |
If you find this work useful, please consider citing our paper:
|
193 |
|