xshubhamx commited on
Commit
4b6c8ec
·
verified ·
1 Parent(s): c9193b1

End of training

Browse files
Files changed (2) hide show
  1. README.md +104 -0
  2. adapter_model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: law-ai/InLegalBERT
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: legal-bert-lora-no-grad
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # legal-bert-lora-no-grad
19
+
20
+ This model is a fine-tuned version of [law-ai/InLegalBERT](https://huggingface.co/law-ai/InLegalBERT) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.5927
23
+ - Accuracy: 0.8288
24
+ - Precision: 0.8291
25
+ - Recall: 0.8288
26
+ - Precision Macro: 0.7852
27
+ - Recall Macro: 0.7756
28
+ - Macro Fpr: 0.0151
29
+ - Weighted Fpr: 0.0145
30
+ - Weighted Specificity: 0.9775
31
+ - Macro Specificity: 0.9871
32
+ - Weighted Sensitivity: 0.8288
33
+ - Macro Sensitivity: 0.7756
34
+ - F1 Micro: 0.8288
35
+ - F1 Macro: 0.7761
36
+ - F1 Weighted: 0.8279
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 30
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
66
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
67
+ | 1.6412 | 1.0 | 643 | 0.7925 | 0.7514 | 0.7190 | 0.7514 | 0.4123 | 0.4707 | 0.0237 | 0.0231 | 0.9699 | 0.9814 | 0.7514 | 0.4707 | 0.7514 | 0.4277 | 0.7283 |
68
+ | 0.7481 | 2.0 | 1286 | 0.6772 | 0.7901 | 0.7726 | 0.7901 | 0.5958 | 0.6252 | 0.0192 | 0.0186 | 0.9741 | 0.9843 | 0.7901 | 0.6252 | 0.7901 | 0.5998 | 0.7769 |
69
+ | 0.6465 | 3.0 | 1929 | 0.6500 | 0.8048 | 0.7931 | 0.8048 | 0.6216 | 0.6414 | 0.0176 | 0.0170 | 0.9764 | 0.9854 | 0.8048 | 0.6414 | 0.8048 | 0.6110 | 0.7904 |
70
+ | 0.4707 | 4.0 | 2572 | 0.6704 | 0.8095 | 0.8008 | 0.8095 | 0.6322 | 0.6689 | 0.0173 | 0.0165 | 0.9745 | 0.9856 | 0.8095 | 0.6689 | 0.8095 | 0.6425 | 0.8018 |
71
+ | 0.4021 | 5.0 | 3215 | 0.7320 | 0.8280 | 0.8269 | 0.8280 | 0.7782 | 0.7573 | 0.0154 | 0.0146 | 0.9765 | 0.9870 | 0.8280 | 0.7573 | 0.8280 | 0.7571 | 0.8219 |
72
+ | 0.3627 | 6.0 | 3858 | 0.6892 | 0.8242 | 0.8227 | 0.8242 | 0.7431 | 0.7365 | 0.0156 | 0.0150 | 0.9768 | 0.9867 | 0.8242 | 0.7365 | 0.8242 | 0.7374 | 0.8223 |
73
+ | 0.2866 | 7.0 | 4501 | 0.8756 | 0.8180 | 0.8171 | 0.8180 | 0.7748 | 0.7410 | 0.0166 | 0.0156 | 0.9718 | 0.9860 | 0.8180 | 0.7410 | 0.8180 | 0.7444 | 0.8122 |
74
+ | 0.2639 | 8.0 | 5144 | 0.8580 | 0.8265 | 0.8259 | 0.8265 | 0.7989 | 0.7428 | 0.0155 | 0.0148 | 0.9756 | 0.9868 | 0.8265 | 0.7428 | 0.8265 | 0.7480 | 0.8217 |
75
+ | 0.2295 | 9.0 | 5787 | 0.9366 | 0.8257 | 0.8231 | 0.8257 | 0.7725 | 0.7465 | 0.0155 | 0.0149 | 0.9762 | 0.9868 | 0.8257 | 0.7465 | 0.8257 | 0.7524 | 0.8223 |
76
+ | 0.195 | 10.0 | 6430 | 0.9685 | 0.8273 | 0.8236 | 0.8273 | 0.7595 | 0.7515 | 0.0153 | 0.0147 | 0.9767 | 0.9869 | 0.8273 | 0.7515 | 0.8273 | 0.7528 | 0.8241 |
77
+ | 0.1617 | 11.0 | 7073 | 1.0406 | 0.8311 | 0.8263 | 0.8311 | 0.7615 | 0.7552 | 0.0149 | 0.0143 | 0.9776 | 0.9872 | 0.8311 | 0.7552 | 0.8311 | 0.7543 | 0.8265 |
78
+ | 0.1421 | 12.0 | 7716 | 1.0713 | 0.8319 | 0.8276 | 0.8319 | 0.7626 | 0.7533 | 0.0148 | 0.0142 | 0.9773 | 0.9873 | 0.8319 | 0.7533 | 0.8319 | 0.7546 | 0.8287 |
79
+ | 0.1184 | 13.0 | 8359 | 1.1125 | 0.8257 | 0.8209 | 0.8257 | 0.7569 | 0.7504 | 0.0155 | 0.0149 | 0.9765 | 0.9868 | 0.8257 | 0.7504 | 0.8257 | 0.7510 | 0.8219 |
80
+ | 0.1017 | 14.0 | 9002 | 1.1926 | 0.8211 | 0.8215 | 0.8211 | 0.7675 | 0.7815 | 0.0159 | 0.0153 | 0.9776 | 0.9866 | 0.8211 | 0.7815 | 0.8211 | 0.7727 | 0.8196 |
81
+ | 0.0752 | 15.0 | 9645 | 1.2508 | 0.8164 | 0.8121 | 0.8164 | 0.7479 | 0.7377 | 0.0164 | 0.0158 | 0.9753 | 0.9861 | 0.8164 | 0.7377 | 0.8164 | 0.7402 | 0.8133 |
82
+ | 0.0787 | 16.0 | 10288 | 1.3247 | 0.8218 | 0.8199 | 0.8218 | 0.8034 | 0.7585 | 0.0160 | 0.0152 | 0.9752 | 0.9865 | 0.8218 | 0.7585 | 0.8218 | 0.7698 | 0.8188 |
83
+ | 0.0668 | 17.0 | 10931 | 1.3497 | 0.8211 | 0.8201 | 0.8211 | 0.7500 | 0.7487 | 0.0158 | 0.0153 | 0.9778 | 0.9866 | 0.8211 | 0.7487 | 0.8211 | 0.7468 | 0.8198 |
84
+ | 0.0471 | 18.0 | 11574 | 1.4278 | 0.8164 | 0.8174 | 0.8164 | 0.7672 | 0.7670 | 0.0165 | 0.0158 | 0.9759 | 0.9862 | 0.8164 | 0.7670 | 0.8164 | 0.7644 | 0.8159 |
85
+ | 0.0492 | 19.0 | 12217 | 1.4784 | 0.8180 | 0.8178 | 0.8180 | 0.7631 | 0.7431 | 0.0162 | 0.0156 | 0.9763 | 0.9863 | 0.8180 | 0.7431 | 0.8180 | 0.7453 | 0.8156 |
86
+ | 0.0368 | 20.0 | 12860 | 1.4747 | 0.8195 | 0.8183 | 0.8195 | 0.7729 | 0.7568 | 0.0161 | 0.0155 | 0.9760 | 0.9864 | 0.8195 | 0.7568 | 0.8195 | 0.7622 | 0.8180 |
87
+ | 0.0329 | 21.0 | 13503 | 1.5075 | 0.8280 | 0.8290 | 0.8280 | 0.7825 | 0.7845 | 0.0152 | 0.0146 | 0.9782 | 0.9871 | 0.8280 | 0.7845 | 0.8280 | 0.7798 | 0.8268 |
88
+ | 0.0266 | 22.0 | 14146 | 1.4783 | 0.8273 | 0.8262 | 0.8273 | 0.7780 | 0.7612 | 0.0153 | 0.0147 | 0.9779 | 0.9870 | 0.8273 | 0.7612 | 0.8273 | 0.7651 | 0.8247 |
89
+ | 0.0302 | 23.0 | 14789 | 1.5281 | 0.8234 | 0.8246 | 0.8234 | 0.7745 | 0.7699 | 0.0158 | 0.0151 | 0.9760 | 0.9866 | 0.8234 | 0.7699 | 0.8234 | 0.7679 | 0.8224 |
90
+ | 0.0207 | 24.0 | 15432 | 1.5475 | 0.8265 | 0.8262 | 0.8265 | 0.7809 | 0.7727 | 0.0155 | 0.0148 | 0.9768 | 0.9869 | 0.8265 | 0.7727 | 0.8265 | 0.7721 | 0.8248 |
91
+ | 0.0168 | 25.0 | 16075 | 1.5237 | 0.8242 | 0.8237 | 0.8242 | 0.7726 | 0.7619 | 0.0155 | 0.0150 | 0.9775 | 0.9868 | 0.8242 | 0.7619 | 0.8242 | 0.7629 | 0.8231 |
92
+ | 0.0167 | 26.0 | 16718 | 1.5815 | 0.8234 | 0.8255 | 0.8234 | 0.7766 | 0.7728 | 0.0156 | 0.0151 | 0.9775 | 0.9867 | 0.8234 | 0.7728 | 0.8234 | 0.7707 | 0.8232 |
93
+ | 0.0127 | 27.0 | 17361 | 1.6010 | 0.8218 | 0.8228 | 0.8218 | 0.7790 | 0.7716 | 0.0158 | 0.0152 | 0.9769 | 0.9866 | 0.8218 | 0.7716 | 0.8218 | 0.7709 | 0.8211 |
94
+ | 0.0094 | 28.0 | 18004 | 1.5774 | 0.8265 | 0.8269 | 0.8265 | 0.7788 | 0.7739 | 0.0153 | 0.0148 | 0.9778 | 0.9870 | 0.8265 | 0.7739 | 0.8265 | 0.7728 | 0.8258 |
95
+ | 0.0063 | 29.0 | 18647 | 1.5894 | 0.8304 | 0.8306 | 0.8304 | 0.7825 | 0.7764 | 0.0150 | 0.0144 | 0.9779 | 0.9872 | 0.8304 | 0.7764 | 0.8304 | 0.7759 | 0.8296 |
96
+ | 0.0126 | 30.0 | 19290 | 1.5927 | 0.8288 | 0.8291 | 0.8288 | 0.7852 | 0.7756 | 0.0151 | 0.0145 | 0.9775 | 0.9871 | 0.8288 | 0.7756 | 0.8288 | 0.7761 | 0.8279 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.35.2
102
+ - Pytorch 2.1.0+cu121
103
+ - Datasets 2.18.0
104
+ - Tokenizers 0.15.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:05905410de4a7ce1af449a510910a761bc384f46ec0c1900a3fea0ded8f558cc
3
  size 104549068
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff7ef568e27884a6c9c79736b3e83633b09a483acb00c9b5d1fd251d9af762e
3
  size 104549068