xshubhamx commited on
Commit
6bca406
·
verified ·
1 Parent(s): 97a8e68

Upload folder using huggingface_hub

Browse files
training_checkpoints/checkpoint-2400/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: law-ai/InLegalBERT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
training_checkpoints/checkpoint-2400/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "law-ai/InLegalBERT",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "value",
24
+ "dense",
25
+ "key",
26
+ "query"
27
+ ],
28
+ "task_type": "SEQ_CLS",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
training_checkpoints/checkpoint-2400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d956035c8a7dcaa4e40c784b379d6ea7251198e6d97eff87f9955fe9f29b693
3
+ size 104549068
training_checkpoints/checkpoint-2400/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 30522
3
+ }
training_checkpoints/checkpoint-2400/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9386ce654875e930f842df81e209c0daafbf13ec24218fb2dd8af31b99513c20
3
+ size 21646778
training_checkpoints/checkpoint-2400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ef0506012dcb5a11818b2f315b0aed7e4e1fe703422f5033754a0ed2e854b64
3
+ size 14244
training_checkpoints/checkpoint-2400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1e148d8aa9ee6fba677da24cd9589db9b2fa7bbfa9dbd694102b5142f294d6b
3
+ size 1064
training_checkpoints/checkpoint-2400/special_tokens_map.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "sep_token": "[SEP]",
12
+ "unk_token": "[UNK]"
13
+ }
training_checkpoints/checkpoint-2400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-2400/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30522": {
44
+ "content": "<pad>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "clean_up_tokenization_spaces": true,
53
+ "cls_token": "[CLS]",
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "[SEP]",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "BertTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
training_checkpoints/checkpoint-2400/trainer_state.json ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6460817297487148,
3
+ "best_model_checkpoint": "InLegalBERT-lora/checkpoint-2400",
4
+ "epoch": 14.930015552099533,
5
+ "eval_steps": 500,
6
+ "global_step": 2400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.6553059643687065,
14
+ "eval_f1_macro": 0.34196434919671853,
15
+ "eval_f1_micro": 0.6553059643687065,
16
+ "eval_f1_weighted": 0.6146575775654787,
17
+ "eval_loss": 1.2012524604797363,
18
+ "eval_macro_fpr": 0.036531607457408626,
19
+ "eval_macro_sensitivity": 0.39029268516816945,
20
+ "eval_macro_specificity": 0.9740627875145957,
21
+ "eval_precision": 0.6007307052856502,
22
+ "eval_precision_macro": 0.32788772117271575,
23
+ "eval_recall": 0.6553059643687065,
24
+ "eval_recall_macro": 0.39029268516816945,
25
+ "eval_runtime": 30.3344,
26
+ "eval_samples_per_second": 42.559,
27
+ "eval_steps_per_second": 5.34,
28
+ "eval_weighted_fpr": 0.03621124582960371,
29
+ "eval_weighted_sensitivity": 0.6553059643687065,
30
+ "eval_weighted_specificity": 0.9556358483502301,
31
+ "step": 160
32
+ },
33
+ {
34
+ "epoch": 2.0,
35
+ "eval_accuracy": 0.7381874515879163,
36
+ "eval_f1_macro": 0.4250111578260666,
37
+ "eval_f1_micro": 0.7381874515879164,
38
+ "eval_f1_weighted": 0.7236865886821344,
39
+ "eval_loss": 0.8278939127922058,
40
+ "eval_macro_fpr": 0.024763530819684316,
41
+ "eval_macro_sensitivity": 0.46578072689552413,
42
+ "eval_macro_specificity": 0.9806295017830671,
43
+ "eval_precision": 0.7211273477007717,
44
+ "eval_precision_macro": 0.40923635739063985,
45
+ "eval_recall": 0.7381874515879163,
46
+ "eval_recall_macro": 0.46578072689552413,
47
+ "eval_runtime": 34.091,
48
+ "eval_samples_per_second": 37.869,
49
+ "eval_steps_per_second": 4.752,
50
+ "eval_weighted_fpr": 0.024707602339181286,
51
+ "eval_weighted_sensitivity": 0.7381874515879163,
52
+ "eval_weighted_specificity": 0.9712550751580882,
53
+ "step": 321
54
+ },
55
+ {
56
+ "epoch": 3.0,
57
+ "eval_accuracy": 0.7544539116963594,
58
+ "eval_f1_macro": 0.44305220236653187,
59
+ "eval_f1_micro": 0.7544539116963594,
60
+ "eval_f1_weighted": 0.7304902543811719,
61
+ "eval_loss": 0.713018000125885,
62
+ "eval_macro_fpr": 0.0233195243156939,
63
+ "eval_macro_sensitivity": 0.4769897256873969,
64
+ "eval_macro_specificity": 0.9816367201302573,
65
+ "eval_precision": 0.7255238407846915,
66
+ "eval_precision_macro": 0.4800443784048848,
67
+ "eval_recall": 0.7544539116963594,
68
+ "eval_recall_macro": 0.4769897256873969,
69
+ "eval_runtime": 32.6151,
70
+ "eval_samples_per_second": 39.583,
71
+ "eval_steps_per_second": 4.967,
72
+ "eval_weighted_fpr": 0.02271912850283093,
73
+ "eval_weighted_sensitivity": 0.7544539116963594,
74
+ "eval_weighted_specificity": 0.9700968902575,
75
+ "step": 482
76
+ },
77
+ {
78
+ "epoch": 3.11,
79
+ "learning_rate": 3.958333333333333e-05,
80
+ "loss": 1.1985,
81
+ "step": 500
82
+ },
83
+ {
84
+ "epoch": 4.0,
85
+ "eval_accuracy": 0.7823392718822618,
86
+ "eval_f1_macro": 0.5047859025633034,
87
+ "eval_f1_micro": 0.7823392718822618,
88
+ "eval_f1_weighted": 0.766027283346833,
89
+ "eval_loss": 0.6922410726547241,
90
+ "eval_macro_fpr": 0.02001637486004151,
91
+ "eval_macro_sensitivity": 0.528327896933921,
92
+ "eval_macro_specificity": 0.9837585704961105,
93
+ "eval_precision": 0.7594430092765442,
94
+ "eval_precision_macro": 0.5188076394331661,
95
+ "eval_recall": 0.7823392718822618,
96
+ "eval_recall_macro": 0.528327896933921,
97
+ "eval_runtime": 32.5532,
98
+ "eval_samples_per_second": 39.658,
99
+ "eval_steps_per_second": 4.976,
100
+ "eval_weighted_fpr": 0.019485472574717427,
101
+ "eval_weighted_sensitivity": 0.7823392718822618,
102
+ "eval_weighted_specificity": 0.9740392855593933,
103
+ "step": 643
104
+ },
105
+ {
106
+ "epoch": 5.0,
107
+ "eval_accuracy": 0.7939581719597212,
108
+ "eval_f1_macro": 0.5257108179174788,
109
+ "eval_f1_micro": 0.7939581719597211,
110
+ "eval_f1_weighted": 0.7717932414170925,
111
+ "eval_loss": 0.6710420846939087,
112
+ "eval_macro_fpr": 0.018964580711785816,
113
+ "eval_macro_sensitivity": 0.5571328425020213,
114
+ "eval_macro_specificity": 0.9845265708178329,
115
+ "eval_precision": 0.7734327517428056,
116
+ "eval_precision_macro": 0.5449998556573111,
117
+ "eval_recall": 0.7939581719597212,
118
+ "eval_recall_macro": 0.5571328425020213,
119
+ "eval_runtime": 33.235,
120
+ "eval_samples_per_second": 38.845,
121
+ "eval_steps_per_second": 4.874,
122
+ "eval_weighted_fpr": 0.018199233716475097,
123
+ "eval_weighted_sensitivity": 0.7939581719597212,
124
+ "eval_weighted_specificity": 0.9739403903077732,
125
+ "step": 803
126
+ },
127
+ {
128
+ "epoch": 6.0,
129
+ "eval_accuracy": 0.7970565453137103,
130
+ "eval_f1_macro": 0.5316254099721903,
131
+ "eval_f1_micro": 0.7970565453137104,
132
+ "eval_f1_weighted": 0.7789523196246046,
133
+ "eval_loss": 0.6454855799674988,
134
+ "eval_macro_fpr": 0.018368947118040532,
135
+ "eval_macro_sensitivity": 0.5622105847462606,
136
+ "eval_macro_specificity": 0.9848273693754934,
137
+ "eval_precision": 0.7756987894676903,
138
+ "eval_precision_macro": 0.5353415355904975,
139
+ "eval_recall": 0.7970565453137103,
140
+ "eval_recall_macro": 0.5622105847462606,
141
+ "eval_runtime": 33.0425,
142
+ "eval_samples_per_second": 39.071,
143
+ "eval_steps_per_second": 4.903,
144
+ "eval_weighted_fpr": 0.017862012544314153,
145
+ "eval_weighted_sensitivity": 0.7970565453137103,
146
+ "eval_weighted_specificity": 0.9753539953186898,
147
+ "step": 964
148
+ },
149
+ {
150
+ "epoch": 6.22,
151
+ "learning_rate": 2.916666666666667e-05,
152
+ "loss": 0.5721,
153
+ "step": 1000
154
+ },
155
+ {
156
+ "epoch": 7.0,
157
+ "eval_accuracy": 0.8001549186676995,
158
+ "eval_f1_macro": 0.5486067787470349,
159
+ "eval_f1_micro": 0.8001549186676995,
160
+ "eval_f1_weighted": 0.7845126172395842,
161
+ "eval_loss": 0.6394562721252441,
162
+ "eval_macro_fpr": 0.01807650265580631,
163
+ "eval_macro_sensitivity": 0.5784319115133939,
164
+ "eval_macro_specificity": 0.9850891561725063,
165
+ "eval_precision": 0.7801018097427485,
166
+ "eval_precision_macro": 0.5442815357986059,
167
+ "eval_recall": 0.8001549186676995,
168
+ "eval_recall_macro": 0.5784319115133939,
169
+ "eval_runtime": 32.9727,
170
+ "eval_samples_per_second": 39.154,
171
+ "eval_steps_per_second": 4.913,
172
+ "eval_weighted_fpr": 0.017527173913043478,
173
+ "eval_weighted_sensitivity": 0.8001549186676995,
174
+ "eval_weighted_specificity": 0.9761824239198935,
175
+ "step": 1125
176
+ },
177
+ {
178
+ "epoch": 8.0,
179
+ "eval_accuracy": 0.8024786986831913,
180
+ "eval_f1_macro": 0.5474570084709011,
181
+ "eval_f1_micro": 0.8024786986831914,
182
+ "eval_f1_weighted": 0.787386582262622,
183
+ "eval_loss": 0.6317066550254822,
184
+ "eval_macro_fpr": 0.017822080148589308,
185
+ "eval_macro_sensitivity": 0.5773035410379497,
186
+ "eval_macro_specificity": 0.9852623885220758,
187
+ "eval_precision": 0.783268466071204,
188
+ "eval_precision_macro": 0.5438628735250125,
189
+ "eval_recall": 0.8024786986831913,
190
+ "eval_recall_macro": 0.5773035410379497,
191
+ "eval_runtime": 33.0187,
192
+ "eval_samples_per_second": 39.099,
193
+ "eval_steps_per_second": 4.906,
194
+ "eval_weighted_fpr": 0.017277593332881633,
195
+ "eval_weighted_sensitivity": 0.8024786986831913,
196
+ "eval_weighted_specificity": 0.9764571291479465,
197
+ "step": 1286
198
+ },
199
+ {
200
+ "epoch": 9.0,
201
+ "eval_accuracy": 0.8009295120061968,
202
+ "eval_f1_macro": 0.5609368334662593,
203
+ "eval_f1_micro": 0.8009295120061968,
204
+ "eval_f1_weighted": 0.7875081013739925,
205
+ "eval_loss": 0.6136514544487,
206
+ "eval_macro_fpr": 0.017931645431496272,
207
+ "eval_macro_sensitivity": 0.5841960959288544,
208
+ "eval_macro_specificity": 0.985161694874728,
209
+ "eval_precision": 0.7827917488346946,
210
+ "eval_precision_macro": 0.5593054718395108,
211
+ "eval_recall": 0.8009295120061968,
212
+ "eval_recall_macro": 0.5841960959288544,
213
+ "eval_runtime": 33.7216,
214
+ "eval_samples_per_second": 38.284,
215
+ "eval_steps_per_second": 4.804,
216
+ "eval_weighted_fpr": 0.017443833570895267,
217
+ "eval_weighted_sensitivity": 0.8009295120061968,
218
+ "eval_weighted_specificity": 0.9764959111147221,
219
+ "step": 1446
220
+ },
221
+ {
222
+ "epoch": 9.33,
223
+ "learning_rate": 1.8750000000000002e-05,
224
+ "loss": 0.4166,
225
+ "step": 1500
226
+ },
227
+ {
228
+ "epoch": 10.0,
229
+ "eval_accuracy": 0.8156467854376452,
230
+ "eval_f1_macro": 0.6305053806449583,
231
+ "eval_f1_micro": 0.8156467854376452,
232
+ "eval_f1_weighted": 0.8066651282863864,
233
+ "eval_loss": 0.6248635649681091,
234
+ "eval_macro_fpr": 0.016463869736407642,
235
+ "eval_macro_sensitivity": 0.6430050326236179,
236
+ "eval_macro_specificity": 0.9861908495694477,
237
+ "eval_precision": 0.8054630087428596,
238
+ "eval_precision_macro": 0.639776904615918,
239
+ "eval_recall": 0.8156467854376452,
240
+ "eval_recall_macro": 0.6430050326236179,
241
+ "eval_runtime": 33.5965,
242
+ "eval_samples_per_second": 38.427,
243
+ "eval_steps_per_second": 4.822,
244
+ "eval_weighted_fpr": 0.01588785046728972,
245
+ "eval_weighted_sensitivity": 0.8156467854376452,
246
+ "eval_weighted_specificity": 0.9772159581040682,
247
+ "step": 1607
248
+ },
249
+ {
250
+ "epoch": 11.0,
251
+ "eval_accuracy": 0.8125484120836561,
252
+ "eval_f1_macro": 0.6371983241862614,
253
+ "eval_f1_micro": 0.8125484120836561,
254
+ "eval_f1_weighted": 0.8042305582147614,
255
+ "eval_loss": 0.642641544342041,
256
+ "eval_macro_fpr": 0.016876700974845713,
257
+ "eval_macro_sensitivity": 0.6520338532213917,
258
+ "eval_macro_specificity": 0.9859193883690203,
259
+ "eval_precision": 0.8013591068710365,
260
+ "eval_precision_macro": 0.6397179331634546,
261
+ "eval_recall": 0.8125484120836561,
262
+ "eval_recall_macro": 0.6520338532213917,
263
+ "eval_runtime": 33.85,
264
+ "eval_samples_per_second": 38.139,
265
+ "eval_steps_per_second": 4.786,
266
+ "eval_weighted_fpr": 0.016211146838156484,
267
+ "eval_weighted_sensitivity": 0.8125484120836561,
268
+ "eval_weighted_specificity": 0.9762424134516496,
269
+ "step": 1768
270
+ },
271
+ {
272
+ "epoch": 12.0,
273
+ "eval_accuracy": 0.8164213787761425,
274
+ "eval_f1_macro": 0.6372154277689757,
275
+ "eval_f1_micro": 0.8164213787761425,
276
+ "eval_f1_weighted": 0.8082672837501724,
277
+ "eval_loss": 0.6305465698242188,
278
+ "eval_macro_fpr": 0.016428781045237314,
279
+ "eval_macro_sensitivity": 0.6526108250586471,
280
+ "eval_macro_specificity": 0.9862261630603141,
281
+ "eval_precision": 0.8050297561179627,
282
+ "eval_precision_macro": 0.635785837139922,
283
+ "eval_recall": 0.8164213787761425,
284
+ "eval_recall_macro": 0.6526108250586471,
285
+ "eval_runtime": 33.9194,
286
+ "eval_samples_per_second": 38.061,
287
+ "eval_steps_per_second": 4.776,
288
+ "eval_weighted_fpr": 0.01580737677582872,
289
+ "eval_weighted_sensitivity": 0.8164213787761425,
290
+ "eval_weighted_specificity": 0.9769710671285662,
291
+ "step": 1929
292
+ },
293
+ {
294
+ "epoch": 12.44,
295
+ "learning_rate": 8.333333333333334e-06,
296
+ "loss": 0.3406,
297
+ "step": 2000
298
+ },
299
+ {
300
+ "epoch": 13.0,
301
+ "eval_accuracy": 0.820294345468629,
302
+ "eval_f1_macro": 0.6352955893706947,
303
+ "eval_f1_micro": 0.8202943454686291,
304
+ "eval_f1_weighted": 0.8129160642124462,
305
+ "eval_loss": 0.6275700926780701,
306
+ "eval_macro_fpr": 0.015989017879060468,
307
+ "eval_macro_sensitivity": 0.6466831772856799,
308
+ "eval_macro_specificity": 0.9865122165499488,
309
+ "eval_precision": 0.8102004267117454,
310
+ "eval_precision_macro": 0.6417861741800394,
311
+ "eval_recall": 0.820294345468629,
312
+ "eval_recall_macro": 0.6466831772856799,
313
+ "eval_runtime": 32.8101,
314
+ "eval_samples_per_second": 39.348,
315
+ "eval_steps_per_second": 4.938,
316
+ "eval_weighted_fpr": 0.015407092575375215,
317
+ "eval_weighted_sensitivity": 0.820294345468629,
318
+ "eval_weighted_specificity": 0.9773889027806014,
319
+ "step": 2089
320
+ },
321
+ {
322
+ "epoch": 14.0,
323
+ "eval_accuracy": 0.8187451587916343,
324
+ "eval_f1_macro": 0.6446278757638214,
325
+ "eval_f1_micro": 0.8187451587916342,
326
+ "eval_f1_weighted": 0.81074292931159,
327
+ "eval_loss": 0.6428066492080688,
328
+ "eval_macro_fpr": 0.016186760254085688,
329
+ "eval_macro_sensitivity": 0.6618493798882754,
330
+ "eval_macro_specificity": 0.9863911143208972,
331
+ "eval_precision": 0.8079041434352637,
332
+ "eval_precision_macro": 0.6466770185879867,
333
+ "eval_recall": 0.8187451587916343,
334
+ "eval_recall_macro": 0.6618493798882754,
335
+ "eval_runtime": 32.4757,
336
+ "eval_samples_per_second": 39.753,
337
+ "eval_steps_per_second": 4.988,
338
+ "eval_weighted_fpr": 0.015566790846194785,
339
+ "eval_weighted_sensitivity": 0.8187451587916343,
340
+ "eval_weighted_specificity": 0.9771215560218227,
341
+ "step": 2250
342
+ },
343
+ {
344
+ "epoch": 14.93,
345
+ "eval_accuracy": 0.820294345468629,
346
+ "eval_f1_macro": 0.6460817297487148,
347
+ "eval_f1_micro": 0.8202943454686291,
348
+ "eval_f1_weighted": 0.8125066936495612,
349
+ "eval_loss": 0.634365439414978,
350
+ "eval_macro_fpr": 0.016027569664931556,
351
+ "eval_macro_sensitivity": 0.6624718661648383,
352
+ "eval_macro_specificity": 0.9864925668028308,
353
+ "eval_precision": 0.8092174819516477,
354
+ "eval_precision_macro": 0.6486629857671901,
355
+ "eval_recall": 0.820294345468629,
356
+ "eval_recall_macro": 0.6624718661648383,
357
+ "eval_runtime": 32.8393,
358
+ "eval_samples_per_second": 39.313,
359
+ "eval_steps_per_second": 4.933,
360
+ "eval_weighted_fpr": 0.015407092575375215,
361
+ "eval_weighted_sensitivity": 0.820294345468629,
362
+ "eval_weighted_specificity": 0.9770941565738336,
363
+ "step": 2400
364
+ }
365
+ ],
366
+ "logging_steps": 500,
367
+ "max_steps": 2400,
368
+ "num_train_epochs": 15,
369
+ "save_steps": 500,
370
+ "total_flos": 2.082121538560819e+16,
371
+ "trial_name": null,
372
+ "trial_params": null
373
+ }
training_checkpoints/checkpoint-2400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc31445fe50ce1f205a3e37fa3ccad7a43761d37d0a165cc111457915d3af5b
3
+ size 4600
training_checkpoints/checkpoint-2400/vocab.txt ADDED
The diff for this file is too large to render. See raw diff