File size: 6,880 Bytes
2b51b14
 
 
 
9820a05
2b51b14
 
 
 
 
 
 
 
d84b5f4
 
3dd46df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84b5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b51b14
 
 
 
 
 
 
 
6d21c4f
 
 
 
be61bcd
 
 
 
 
 
 
 
 
 
 
2b51b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be61bcd
 
2b51b14
 
 
 
 
be61bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b51b14
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: mit
tags:
- generated_from_trainer
base_model: law-ai/InLegalBERT
metrics:
- accuracy
- precision
- recall
model-index:
- name: InLegalBERT
  results: []
---
## Metrics

- loss: 1.0342
- accuracy: 0.8359
- precision: 0.8409
- recall: 0.8359
- precision_macro: 0.8136
- recall_macro: 0.8000
- macro_fpr: 0.0142
- weighted_fpr: 0.0138
- weighted_specificity: 0.9792
- macro_specificity: 0.9877
- weighted_sensitivity: 0.8359
- macro_sensitivity: 0.8000
- f1_micro: 0.8359
- f1_macro: 0.8010
- f1_weighted: 0.8352
- runtime: 19.9583
- samples_per_second: 64.4340
- steps_per_second: 8.0670

## Metrics

- loss: 1.0345
- accuracy: 0.8358
- precision: 0.8408
- recall: 0.8358
- precision_macro: 0.8207
- recall_macro: 0.7957
- macro_fpr: 0.0143
- weighted_fpr: 0.0138
- weighted_specificity: 0.9790
- macro_specificity: 0.9877
- weighted_sensitivity: 0.8358
- macro_sensitivity: 0.7957
- f1_micro: 0.8358
- f1_macro: 0.8020
- f1_weighted: 0.8352
- runtime: 22.0569
- samples_per_second: 58.5300
- steps_per_second: 7.3450


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# InLegalBERT

This model is a fine-tuned version of [law-ai/InLegalBERT](https://huggingface.co/law-ai/InLegalBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0763
- Accuracy: 0.8304
- Precision: 0.8363
- Recall: 0.8304
- Precision Macro: 0.7959
- Recall Macro: 0.8029
- Macro Fpr: 0.0150
- Weighted Fpr: 0.0145
- Weighted Specificity: 0.9774
- Macro Specificity: 0.9871
- Weighted Sensitivity: 0.8296
- Macro Sensitivity: 0.8029
- F1 Micro: 0.8296
- F1 Macro: 0.7954
- F1 Weighted: 0.8283

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
| 1.065         | 1.0   | 643  | 0.6395          | 0.7994   | 0.7818    | 0.7994 | 0.6194          | 0.6308       | 0.0185    | 0.0176       | 0.9714               | 0.9847            | 0.7994               | 0.6308            | 0.7994   | 0.6029   | 0.7804      |
| 0.5866        | 2.0   | 1286 | 0.6907          | 0.8187   | 0.8199    | 0.8187 | 0.7285          | 0.7366       | 0.0161    | 0.0156       | 0.9765               | 0.9864            | 0.8187               | 0.7366            | 0.8187   | 0.7276   | 0.8152      |
| 0.4622        | 3.0   | 1929 | 0.8056          | 0.8180   | 0.8137    | 0.8180 | 0.7227          | 0.7376       | 0.0162    | 0.0156       | 0.9764               | 0.9863            | 0.8180               | 0.7376            | 0.8180   | 0.7283   | 0.8150      |
| 0.2398        | 4.0   | 2572 | 0.9310          | 0.8172   | 0.8235    | 0.8172 | 0.7661          | 0.7425       | 0.0161    | 0.0157       | 0.9762               | 0.9862            | 0.8172               | 0.7425            | 0.8172   | 0.7407   | 0.8161      |
| 0.1611        | 5.0   | 3215 | 1.0763          | 0.8304   | 0.8363    | 0.8304 | 0.8174          | 0.7918       | 0.0148    | 0.0144       | 0.9784               | 0.9873            | 0.8304               | 0.7918            | 0.8304   | 0.7986   | 0.8304      |
| 0.1055        | 6.0   | 3858 | 1.1377          | 0.8257   | 0.8275    | 0.8257 | 0.8039          | 0.7810       | 0.0154    | 0.0149       | 0.9775               | 0.9869            | 0.8257               | 0.7810            | 0.8257   | 0.7863   | 0.8246      |
| 0.0463        | 7.0   | 4501 | 1.3215          | 0.8071   | 0.8111    | 0.8071 | 0.7692          | 0.7689       | 0.0172    | 0.0168       | 0.9761               | 0.9856            | 0.8071               | 0.7689            | 0.8071   | 0.7661   | 0.8078      |
| 0.031         | 8.0   | 5144 | 1.3483          | 0.8203   | 0.8170    | 0.8203 | 0.7773          | 0.7727       | 0.0161    | 0.0154       | 0.9751               | 0.9864            | 0.8203               | 0.7727            | 0.8203   | 0.7690   | 0.8175      |
| 0.0202        | 9.0   | 5787 | 1.3730          | 0.8280   | 0.8263    | 0.8280 | 0.7818          | 0.7803       | 0.0152    | 0.0146       | 0.9779               | 0.9871            | 0.8280               | 0.7803            | 0.8280   | 0.7753   | 0.8256      |
| 0.0133        | 10.0  | 6430 | 1.5407          | 0.8164   | 0.8163    | 0.8164 | 0.7688          | 0.7779       | 0.0165    | 0.0158       | 0.9751               | 0.9861            | 0.8164               | 0.7779            | 0.8164   | 0.7655   | 0.8135      |
| 0.0051        | 11.0  | 7073 | 1.5235          | 0.8226   | 0.8265    | 0.8226 | 0.7900          | 0.7680       | 0.0156    | 0.0152       | 0.9769               | 0.9866            | 0.8226               | 0.7680            | 0.8226   | 0.7744   | 0.8234      |
| 0.0027        | 12.0  | 7716 | 1.5643          | 0.8265   | 0.8259    | 0.8265 | 0.7805          | 0.7841       | 0.0154    | 0.0148       | 0.9772               | 0.9869            | 0.8265               | 0.7841            | 0.8265   | 0.7775   | 0.8245      |
| 0.002         | 13.0  | 8359 | 1.5516          | 0.8280   | 0.8273    | 0.8280 | 0.7882          | 0.7902       | 0.0152    | 0.0146       | 0.9779               | 0.9871            | 0.8280               | 0.7902            | 0.8280   | 0.7860   | 0.8262      |
| 0.0015        | 14.0  | 9002 | 1.5835          | 0.8273   | 0.8268    | 0.8273 | 0.7943          | 0.8022       | 0.0153    | 0.0147       | 0.9773               | 0.9870            | 0.8273               | 0.8022            | 0.8273   | 0.7943   | 0.8259      |
| 0.0007        | 15.0  | 9645 | 1.5914          | 0.8296   | 0.8293    | 0.8296 | 0.7959          | 0.8029       | 0.0150    | 0.0145       | 0.9774               | 0.9871            | 0.8296               | 0.8029            | 0.8296   | 0.7954   | 0.8283      |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2