pybeebee nielsr HF Staff commited on
Commit
f5ccd2d
Β·
verified Β·
1 Parent(s): 6ed5eb7

Set library_name, pipeline_tag (#1)

Browse files

- Set library_name, pipeline_tag (897b665d3422c33078b341154eff73f06c93d90c)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +16 -6
README.md CHANGED
@@ -1,15 +1,17 @@
1
  ---
2
- license: apache-2.0
 
3
  datasets:
4
  - yale-nlp/MDCure-72k
5
  language:
6
  - en
7
- base_model:
8
- - Qwen/Qwen2-1.5B-Instruct
9
  tags:
10
  - multi-document
11
  - long-context
12
  - Long Context
 
 
13
  ---
14
 
15
  # MDCure-Qwen2-1.5B-Instruct
@@ -41,7 +43,9 @@ We recommend using the latest version of HF Transformers, or any `transformers>=
41
 
42
  ## Quickstart
43
 
44
- Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `\n\n` or `<doc-sep>` to maintain consistency with the format of the data used during training.
 
 
45
 
46
  ```python
47
  model = AutoModelForCausalLM.from_pretrained("yale-nlp/MDCure-Qwen2-1.5B-Instruct", device_map='auto',torch_dtype="auto")
@@ -50,7 +54,13 @@ tokenizer = AutoTokenizer.from_pretrained("yale-nlp/MDCure-Qwen2-1.5B-Instruct")
50
  source_text_1 = ...
51
  source_text_2 = ...
52
  source_text_3 = ...
53
- prompt = f"{source_text_1}\n\n{source_text_2}\n\n{source_text_3}\n\nWhat happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
 
 
 
 
 
 
54
 
55
  messages = [
56
  {"role": "system", "content": "You are an assistant with strong multi-document processing skills."},
@@ -78,7 +88,7 @@ We open-source our custom multi-document instruction scoring model, MDCureRM, as
78
  | **MDCure-Qwen2-1.5B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
79
  | **MDCure-Qwen2-7B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
80
  | **MDCure-LLAMA3.1-8B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
81
- | **MDCure-LLAMA3.1-70B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72 |
82
 
83
  ## Citation
84
 
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen2-1.5B-Instruct
4
  datasets:
5
  - yale-nlp/MDCure-72k
6
  language:
7
  - en
8
+ license: apache-2.0
 
9
  tags:
10
  - multi-document
11
  - long-context
12
  - Long Context
13
+ library_name: transformers
14
+ pipeline_tag: text-generation
15
  ---
16
 
17
  # MDCure-Qwen2-1.5B-Instruct
 
43
 
44
  ## Quickstart
45
 
46
+ Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `
47
+
48
+ ` or `<doc-sep>` to maintain consistency with the format of the data used during training.
49
 
50
  ```python
51
  model = AutoModelForCausalLM.from_pretrained("yale-nlp/MDCure-Qwen2-1.5B-Instruct", device_map='auto',torch_dtype="auto")
 
54
  source_text_1 = ...
55
  source_text_2 = ...
56
  source_text_3 = ...
57
+ prompt = f"{source_text_1}
58
+
59
+ {source_text_2}
60
+
61
+ {source_text_3}
62
+
63
+ What happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
64
 
65
  messages = [
66
  {"role": "system", "content": "You are an assistant with strong multi-document processing skills."},
 
88
  | **MDCure-Qwen2-1.5B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
89
  | **MDCure-Qwen2-7B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
90
  | **MDCure-LLAMA3.1-8B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
91
+ | **MDCure-LLAMA3.1-70B-Instruct** | [πŸ€— HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72k |
92
 
93
  ## Citation
94