Upload end2end_absa.py
Browse files- end2end_absa.py +1134 -0
end2end_absa.py
ADDED
@@ -0,0 +1,1134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# File: end2end_absa.py
|
3 |
+
# Time: 18:44 12/08/2025
|
4 |
+
# Author: YANG, HENG <[email protected]> (杨恒)
|
5 |
+
# Website: https://yangheng95.github.io
|
6 |
+
# GitHub: https://github.com/yangheng95
|
7 |
+
# HuggingFace: https://huggingface.co/yangheng
|
8 |
+
# Google Scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
|
9 |
+
# Copyright (C) 2019-2025. All rights reserved.
|
10 |
+
|
11 |
+
# ====== New/Replacement imports ======
|
12 |
+
from typing import List, Dict, Any
|
13 |
+
|
14 |
+
from transformers import (
|
15 |
+
AutoModelForSequenceClassification,
|
16 |
+
AutoTokenizer,
|
17 |
+
AutoModelForTokenClassification,
|
18 |
+
pipeline
|
19 |
+
)
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import re
|
23 |
+
from pprint import pprint
|
24 |
+
|
25 |
+
# Device configuration
|
26 |
+
device = 0 if torch.cuda.is_available() else -1
|
27 |
+
|
28 |
+
# Model configurations
|
29 |
+
ASPECT_MODEL_ID = "yangheng/deberta-v3-base-end2end-absa"
|
30 |
+
SENTI_MODEL_ID = "yangheng/deberta-v3-base-absa-v1.1"
|
31 |
+
|
32 |
+
# When classifier's highest confidence < this threshold, optionally use extractor's ASP-XXX as fallback
|
33 |
+
USE_EXTRACTOR_SENTI_AS_FALLBACK = True
|
34 |
+
FALLBACK_CONFIDENCE_THRESHOLD = 0.8
|
35 |
+
|
36 |
+
# Maximum length and truncation strategy to avoid truncation warnings
|
37 |
+
TRUNCATION = True
|
38 |
+
MAX_LENGTH = 512 # Adjust based on GPU memory and text length
|
39 |
+
BATCH_SIZE = 16 # Batch size, adjust based on resources
|
40 |
+
|
41 |
+
# ================================
|
42 |
+
|
43 |
+
# Initialize tokenizer and model for aspect extraction
|
44 |
+
try:
|
45 |
+
tok_asp = AutoTokenizer.from_pretrained(SENTI_MODEL_ID, use_fast=True)
|
46 |
+
mdl_asp = AutoModelForTokenClassification.from_pretrained(ASPECT_MODEL_ID)
|
47 |
+
|
48 |
+
aspect_extractor = pipeline(
|
49 |
+
task="token-classification",
|
50 |
+
model=mdl_asp,
|
51 |
+
tokenizer=tok_asp,
|
52 |
+
aggregation_strategy="simple",
|
53 |
+
device=device,
|
54 |
+
)
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error loading aspect extraction models: {e}")
|
57 |
+
raise
|
58 |
+
|
59 |
+
# Initialize sentiment classifier (text_pair mode)
|
60 |
+
try:
|
61 |
+
sent_classifier = pipeline(
|
62 |
+
task="text-classification",
|
63 |
+
model=SENTI_MODEL_ID,
|
64 |
+
device=device,
|
65 |
+
return_all_scores=True, # Return all class scores for confidence
|
66 |
+
function_to_apply="softmax",
|
67 |
+
top_k=None
|
68 |
+
)
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Error loading sentiment classification model: {e}")
|
71 |
+
raise
|
72 |
+
|
73 |
+
|
74 |
+
# --- Defensive fallback: when offset is missing, use substring search ---
|
75 |
+
|
76 |
+
def _clean_aspect(s: str) -> str:
|
77 |
+
"""Clean aspect string by removing leading/trailing punctuation and whitespace."""
|
78 |
+
if not s:
|
79 |
+
return ""
|
80 |
+
return re.sub(r'^[\s\.,;:!?\(\)\[\]\{\}"\']+|[\s\.,;:!?\(\)\[\]\{\}"\']+$', "", s).strip()
|
81 |
+
|
82 |
+
|
83 |
+
def _locate_span(text: str, phrase: str):
|
84 |
+
"""Locate the span of a phrase in text, with case-insensitive fallback."""
|
85 |
+
if not phrase:
|
86 |
+
return None
|
87 |
+
|
88 |
+
# Try exact match first
|
89 |
+
pat = re.escape(phrase)
|
90 |
+
m = re.search(pat, text)
|
91 |
+
if m:
|
92 |
+
return m.start(), m.end()
|
93 |
+
|
94 |
+
# Try case-insensitive match
|
95 |
+
m = re.search(pat, text, flags=re.IGNORECASE)
|
96 |
+
if m:
|
97 |
+
return m.start(), m.end()
|
98 |
+
|
99 |
+
return None
|
100 |
+
|
101 |
+
|
102 |
+
def extract_aspects_for_text(text: str) -> List[Dict[str, Any]]:
|
103 |
+
"""
|
104 |
+
Extract aspects from a single text using the aspect extraction model.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
text: Input text to extract aspects from
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
List of aspect dictionaries with position and metadata
|
111 |
+
"""
|
112 |
+
if not text.strip():
|
113 |
+
return []
|
114 |
+
|
115 |
+
try:
|
116 |
+
ents = aspect_extractor(text)
|
117 |
+
print(f"Raw entities extracted: {ents}") # Debug output
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error in aspect extraction for text '{text[:50]}...': {e}")
|
120 |
+
return []
|
121 |
+
|
122 |
+
aspects = []
|
123 |
+
seen = set()
|
124 |
+
|
125 |
+
for ent in ents:
|
126 |
+
label = (ent.get("entity_group") or "").lower()
|
127 |
+
print(f"Processing entity: {ent}, label: {label}") # Debug output
|
128 |
+
|
129 |
+
# More flexible label matching
|
130 |
+
if not any(keyword in label for keyword in ["asp", "aspect", "b-", "i-"]):
|
131 |
+
print(f"Skipping entity with label: {label}")
|
132 |
+
continue
|
133 |
+
|
134 |
+
word = _clean_aspect(ent.get("word", ""))
|
135 |
+
if not word: # Skip empty aspects
|
136 |
+
print(f"Skipping empty aspect")
|
137 |
+
continue
|
138 |
+
|
139 |
+
start = ent.get("start")
|
140 |
+
end = ent.get("end")
|
141 |
+
|
142 |
+
# Fallback: when offset is missing, relocate using substring search
|
143 |
+
if start is None or end is None:
|
144 |
+
loc = _locate_span(text, word)
|
145 |
+
if loc:
|
146 |
+
start, end = loc
|
147 |
+
else:
|
148 |
+
# Skip if position cannot be determined to avoid dirty data
|
149 |
+
print(f"Could not locate aspect '{word}' in text")
|
150 |
+
continue
|
151 |
+
|
152 |
+
# Avoid duplicates
|
153 |
+
key = (word.lower(), int(start), int(end))
|
154 |
+
if key in seen:
|
155 |
+
continue
|
156 |
+
seen.add(key)
|
157 |
+
|
158 |
+
aspect_dict = {
|
159 |
+
"aspect": word,
|
160 |
+
"start": int(start),
|
161 |
+
"end": int(end),
|
162 |
+
"extractor_label": ent.get("entity_group", ""),
|
163 |
+
"extractor_score": float(ent.get("score", 0.0)),
|
164 |
+
}
|
165 |
+
aspects.append(aspect_dict)
|
166 |
+
print(f"Added aspect: {aspect_dict}") # Debug output
|
167 |
+
|
168 |
+
print(f"Final aspects for text: {aspects}") # Debug output
|
169 |
+
return aspects
|
170 |
+
|
171 |
+
|
172 |
+
def classify_aspects(text: str, aspects: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
173 |
+
"""
|
174 |
+
Classify sentiment polarity for each (text, aspect) pair.
|
175 |
+
Since the aspect extractor already provides sentiment labels (ASP-Positive, etc.),
|
176 |
+
we can use those directly or optionally run additional classification.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
text: Original text
|
180 |
+
aspects: List of aspect dictionaries
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
List of aspects enriched with sentiment and confidence information
|
184 |
+
"""
|
185 |
+
if not aspects:
|
186 |
+
return []
|
187 |
+
|
188 |
+
enriched = []
|
189 |
+
for asp in aspects:
|
190 |
+
# Extract sentiment from the extractor label (ASP-Positive -> Positive)
|
191 |
+
extractor_label = asp.get("extractor_label", "")
|
192 |
+
extractor_confidence = asp.get("extractor_score", 0.0)
|
193 |
+
|
194 |
+
# Default values
|
195 |
+
sentiment = "Neutral"
|
196 |
+
confidence = extractor_confidence
|
197 |
+
prob_map = {"Positive": 0.33, "Negative": 0.33, "Neutral": 0.33}
|
198 |
+
|
199 |
+
# Parse sentiment from extractor label
|
200 |
+
if "-" in extractor_label:
|
201 |
+
_, maybe_sentiment = extractor_label.split("-", 1)
|
202 |
+
if maybe_sentiment.capitalize() in ("Positive", "Negative", "Neutral"):
|
203 |
+
sentiment = maybe_sentiment.capitalize()
|
204 |
+
# Create probability distribution with extractor confidence
|
205 |
+
prob_map = {
|
206 |
+
"Positive": confidence if sentiment == "Positive" else (1 - confidence) / 2,
|
207 |
+
"Negative": confidence if sentiment == "Negative" else (1 - confidence) / 2,
|
208 |
+
"Neutral": confidence if sentiment == "Neutral" else (1 - confidence) / 2
|
209 |
+
}
|
210 |
+
|
211 |
+
# Optionally run additional sentiment classification if confidence is low
|
212 |
+
if confidence < FALLBACK_CONFIDENCE_THRESHOLD:
|
213 |
+
try:
|
214 |
+
# Try additional classification
|
215 |
+
combined_input = f"{text} [SEP] {asp['aspect']}"
|
216 |
+
|
217 |
+
result = sent_classifier(
|
218 |
+
combined_input,
|
219 |
+
truncation=TRUNCATION,
|
220 |
+
max_length=MAX_LENGTH
|
221 |
+
)
|
222 |
+
|
223 |
+
if result and isinstance(result, list) and len(result) > 0:
|
224 |
+
if isinstance(result[0], dict):
|
225 |
+
best = max(result, key=lambda d: d.get("score", 0))
|
226 |
+
classifier_sentiment = best.get("label", sentiment)
|
227 |
+
classifier_confidence = float(best.get("score", confidence))
|
228 |
+
|
229 |
+
# Use classifier result if it has higher confidence
|
230 |
+
if classifier_confidence > confidence:
|
231 |
+
sentiment = classifier_sentiment
|
232 |
+
confidence = classifier_confidence
|
233 |
+
prob_map = {d.get("label", "Neutral"): float(d.get("score", 0)) for d in result}
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error in additional classification for aspect '{asp['aspect']}': {e}")
|
237 |
+
# Keep the extractor's result
|
238 |
+
|
239 |
+
enriched.append({
|
240 |
+
**asp,
|
241 |
+
"sentiment": sentiment,
|
242 |
+
"confidence": confidence,
|
243 |
+
"probability": prob_map
|
244 |
+
})
|
245 |
+
|
246 |
+
return enriched
|
247 |
+
|
248 |
+
|
249 |
+
def absa(texts: List[str]) -> List[Dict[str, Any]]:
|
250 |
+
"""
|
251 |
+
Main entry point: Extract aspects from each text and classify their sentiment polarity.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
texts: List of input texts
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
List of structured results for each text
|
258 |
+
"""
|
259 |
+
if not texts:
|
260 |
+
return []
|
261 |
+
|
262 |
+
results = []
|
263 |
+
for i, text in enumerate(texts):
|
264 |
+
if not isinstance(text, str):
|
265 |
+
print(f"Warning: Text at index {i} is not a string, skipping")
|
266 |
+
continue
|
267 |
+
|
268 |
+
try:
|
269 |
+
aspects = extract_aspects_for_text(text)
|
270 |
+
aspects = classify_aspects(text, aspects)
|
271 |
+
|
272 |
+
results.append({
|
273 |
+
"text": text,
|
274 |
+
"aspects": [a["aspect"] for a in aspects],
|
275 |
+
"positions": [[a["start"], a["end"]] for a in aspects],
|
276 |
+
"sentiments": [a["sentiment"] for a in aspects],
|
277 |
+
"confidence": [a["confidence"] for a in aspects],
|
278 |
+
"details": aspects # Preserve rich original information
|
279 |
+
})
|
280 |
+
except Exception as e:
|
281 |
+
print(f"Error processing text at index {i}: {e}")
|
282 |
+
results.append({
|
283 |
+
"text": text,
|
284 |
+
"aspects": [],
|
285 |
+
"positions": [],
|
286 |
+
"sentiments": [],
|
287 |
+
"confidence": [],
|
288 |
+
"details": []
|
289 |
+
})
|
290 |
+
|
291 |
+
return results
|
292 |
+
|
293 |
+
|
294 |
+
if __name__ == "__main__":
|
295 |
+
# Test samples in multiple languages
|
296 |
+
samples = [
|
297 |
+
"The user interface is brilliant, but the documentation is a total mess.",
|
298 |
+
# English
|
299 |
+
"这家餐厅的牛排很好吃,但是服务很慢。",
|
300 |
+
# Chinese (Simplified): The steak at this restaurant is delicious, but the service is slow.
|
301 |
+
"La batería es malísima, aunque la cámara está muy bien.",
|
302 |
+
# Spanish: The battery is terrible, although the camera is very good.
|
303 |
+
"Le film était captivant, mais la fin était décevante.",
|
304 |
+
# French: The movie was captivating, but the ending was disappointing.
|
305 |
+
"Das Auto ist sehr sparsam, aber die Sitze sind unbequem.",
|
306 |
+
# German: The car is very economical, but the seats are uncomfortable.
|
307 |
+
"Il design è elegante, però il software è pieno di bug.",
|
308 |
+
# Italian: The design is elegant, but the software is full of bugs.
|
309 |
+
"O hotel tem uma vista incrível, mas o café da manhã é fraco.",
|
310 |
+
# Portuguese: The hotel has an incredible view, but the breakfast is weak.
|
311 |
+
"Книга очень интересная, но перевод оставляет желать лучшего.",
|
312 |
+
# Russian: The book is very interesting, but the translation leaves much to be desired.
|
313 |
+
"このアプリは便利だけど、バッテリーの消費が激しい。",
|
314 |
+
# Japanese: This app is useful, but it drains the battery quickly.
|
315 |
+
"음식은 맛있었지만, 가격이 너무 비쌌어요.",
|
316 |
+
# Korean: The food was delicious, but the price was too expensive.
|
317 |
+
"الخدمة ممتازة، لكن الموقع صعب الوصول إليه.",
|
318 |
+
# Arabic: The service is excellent, but the location is hard to reach.
|
319 |
+
"फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।",
|
320 |
+
# Hindi: The phone's camera is great, but the battery life is bad.
|
321 |
+
"De locatie is perfect, alleen is het personeel onvriendelijk.",
|
322 |
+
# Dutch: The location is perfect, however the staff is unfriendly.
|
323 |
+
"Boken är välskriven, men handlingen är förutsägbar.",
|
324 |
+
# Swedish: The book is well-written, but the plot is predictable.
|
325 |
+
"Grafika w grze jest niesamowita, ale fabuła jest nudna.",
|
326 |
+
# Polish: The graphics in the game are amazing, but the story is boring.
|
327 |
+
"Ürün kaliteli görünüyor ama kargo çok geç geldi.",
|
328 |
+
# Turkish: The product looks high quality, but the shipping was very late.
|
329 |
+
"Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.",
|
330 |
+
# Vietnamese: The sound quality is good, however the headphones are not very comfortable.
|
331 |
+
"การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน",
|
332 |
+
# Thai: The acting was great, but the script was rather weak.
|
333 |
+
"Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.",
|
334 |
+
# Greek: The location is fantastic, but the room was very small.
|
335 |
+
"המשחק מהנה, אבל יש בו יותר מדי פרסומות.",
|
336 |
+
# Hebrew: The game is fun, but it has too many ads.
|
337 |
+
"Ponsel ini cepat, tetapi cenderung cepat panas.",
|
338 |
+
# Indonesian: This phone is fast, but it tends to get hot quickly.
|
339 |
+
"Ohjelma on tehokas, mutta käyttöliittymä on sekava.",
|
340 |
+
# Finnish: The program is powerful, but the user interface is confusing.
|
341 |
+
"Maden var lækker, men portionerne var for små.",
|
342 |
+
# Danish: The food was delicious, but the portions were too small.
|
343 |
+
"Počítač je rychlý, ale software je zastaralý.",
|
344 |
+
# Czech: The computer is fast, but the software is outdated.
|
345 |
+
]
|
346 |
+
|
347 |
+
|
348 |
+
print("Running ABSA analysis...")
|
349 |
+
try:
|
350 |
+
results = absa(samples)
|
351 |
+
print("\nResults:")
|
352 |
+
pprint(results, width=120)
|
353 |
+
except Exception as e:
|
354 |
+
print(f"Error running ABSA: {e}")
|
355 |
+
|
356 |
+
|
357 |
+
# >>>> # Example output:
|
358 |
+
"""
|
359 |
+
Running ABSA analysis...
|
360 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}]
|
361 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, label: asp-neutral
|
362 |
+
Added aspect: {'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}
|
363 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}, label: asp-negative
|
364 |
+
Added aspect: {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}
|
365 |
+
Final aspects for text: [{'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}, {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}]
|
366 |
+
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}]
|
367 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, label: asp-positive
|
368 |
+
Added aspect: {'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}
|
369 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}, label: asp-negative
|
370 |
+
Added aspect: {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}
|
371 |
+
Final aspects for text: [{'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}, {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}]
|
372 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}]
|
373 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, label: asp-neutral
|
374 |
+
Added aspect: {'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}
|
375 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}, label: asp-neutral
|
376 |
+
Added aspect: {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}
|
377 |
+
Final aspects for text: [{'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}, {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}]
|
378 |
+
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}]
|
379 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, label: asp-positive
|
380 |
+
Added aspect: {'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}
|
381 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}, label: asp-negative
|
382 |
+
Added aspect: {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}
|
383 |
+
Final aspects for text: [{'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}, {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}]
|
384 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}]
|
385 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, label: asp-neutral
|
386 |
+
Added aspect: {'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}
|
387 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}, label: asp-neutral
|
388 |
+
Added aspect: {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}
|
389 |
+
Final aspects for text: [{'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}, {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}]
|
390 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}]
|
391 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, label: asp-neutral
|
392 |
+
Added aspect: {'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}
|
393 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}, label: asp-neutral
|
394 |
+
Added aspect: {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}
|
395 |
+
Final aspects for text: [{'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}, {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}]
|
396 |
+
You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
|
397 |
+
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}]
|
398 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}, label: asp-negative
|
399 |
+
Added aspect: {'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}
|
400 |
+
Final aspects for text: [{'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}]
|
401 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}]
|
402 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, label: asp-neutral
|
403 |
+
Added aspect: {'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}
|
404 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}, label: asp-neutral
|
405 |
+
Added aspect: {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}
|
406 |
+
Final aspects for text: [{'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}, {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}]
|
407 |
+
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}]
|
408 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}, label: asp-negative
|
409 |
+
Added aspect: {'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}
|
410 |
+
Final aspects for text: [{'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}]
|
411 |
+
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}]
|
412 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, label: asp-positive
|
413 |
+
Skipping empty aspect
|
414 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, label: asp-neutral
|
415 |
+
Added aspect: {'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}
|
416 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}, label: asp-neutral
|
417 |
+
Added aspect: {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}
|
418 |
+
Final aspects for text: [{'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}, {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}]
|
419 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}]
|
420 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, label: asp-neutral
|
421 |
+
Added aspect: {'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}
|
422 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, label: asp-positive
|
423 |
+
Added aspect: {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}
|
424 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, label: asp-neutral
|
425 |
+
Added aspect: {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}
|
426 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}, label: asp-negative
|
427 |
+
Added aspect: {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}
|
428 |
+
Final aspects for text: [{'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}, {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}, {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}, {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}]
|
429 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}]
|
430 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, label: asp-neutral
|
431 |
+
Added aspect: {'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}
|
432 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, label: asp-neutral
|
433 |
+
Added aspect: {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}
|
434 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, label: asp-negative
|
435 |
+
Added aspect: {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}
|
436 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}, label: asp-neutral
|
437 |
+
Added aspect: {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}
|
438 |
+
Final aspects for text: [{'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}, {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}, {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}, {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}]
|
439 |
+
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}]
|
440 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, label: asp-positive
|
441 |
+
Added aspect: {'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}
|
442 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}, label: asp-negative
|
443 |
+
Added aspect: {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}
|
444 |
+
Final aspects for text: [{'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}, {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}]
|
445 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}]
|
446 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, label: asp-neutral
|
447 |
+
Added aspect: {'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}
|
448 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}, label: asp-negative
|
449 |
+
Added aspect: {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}
|
450 |
+
Final aspects for text: [{'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}, {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}]
|
451 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}]
|
452 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, label: asp-neutral
|
453 |
+
Added aspect: {'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}
|
454 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, label: asp-neutral
|
455 |
+
Added aspect: {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}
|
456 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}, label: asp-neutral
|
457 |
+
Added aspect: {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}
|
458 |
+
Final aspects for text: [{'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}, {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}, {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}]
|
459 |
+
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}]
|
460 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}, label: asp-negative
|
461 |
+
Added aspect: {'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}
|
462 |
+
Final aspects for text: [{'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}]
|
463 |
+
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}]
|
464 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, label: asp-positive
|
465 |
+
Added aspect: {'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}
|
466 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}, label: asp-positive
|
467 |
+
Added aspect: {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}
|
468 |
+
Final aspects for text: [{'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}, {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}]
|
469 |
+
Raw entities extracted: []
|
470 |
+
Final aspects for text: []
|
471 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}]
|
472 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, label: asp-neutral
|
473 |
+
Added aspect: {'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}
|
474 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, label: asp-negative
|
475 |
+
Added aspect: {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}
|
476 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}, label: asp-neutral
|
477 |
+
Added aspect: {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}
|
478 |
+
Final aspects for text: [{'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}, {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}, {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}]
|
479 |
+
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}]
|
480 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, label: asp-positive
|
481 |
+
Added aspect: {'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}
|
482 |
+
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}, label: asp-positive
|
483 |
+
Added aspect: {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}
|
484 |
+
Final aspects for text: [{'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}, {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}]
|
485 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}]
|
486 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, label: asp-neutral
|
487 |
+
Added aspect: {'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}
|
488 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, label: asp-neutral
|
489 |
+
Added aspect: {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}
|
490 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}, label: asp-neutral
|
491 |
+
Added aspect: {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}
|
492 |
+
Final aspects for text: [{'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}, {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}, {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}]
|
493 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}]
|
494 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, label: asp-neutral
|
495 |
+
Added aspect: {'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}
|
496 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}, label: asp-neutral
|
497 |
+
Added aspect: {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}
|
498 |
+
Final aspects for text: [{'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}, {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}]
|
499 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}]
|
500 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, label: asp-neutral
|
501 |
+
Added aspect: {'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}
|
502 |
+
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}, label: asp-negative
|
503 |
+
Added aspect: {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}
|
504 |
+
Final aspects for text: [{'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}, {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}]
|
505 |
+
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}]
|
506 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, label: asp-neutral
|
507 |
+
Added aspect: {'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}
|
508 |
+
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}, label: asp-neutral
|
509 |
+
Added aspect: {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}
|
510 |
+
Final aspects for text: [{'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}, {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}]
|
511 |
+
|
512 |
+
Results:
|
513 |
+
[{'aspects': ['user interface', 'documentation'],
|
514 |
+
'confidence': [0.517541766166687, 0.5204463601112366],
|
515 |
+
'details': [{'aspect': 'user interface',
|
516 |
+
'confidence': 0.517541766166687,
|
517 |
+
'end': 18,
|
518 |
+
'extractor_label': 'ASP-Neutral',
|
519 |
+
'extractor_score': 0.517541766166687,
|
520 |
+
'probability': {'Negative': 0.2412291169166565,
|
521 |
+
'Neutral': 0.517541766166687,
|
522 |
+
'Positive': 0.2412291169166565},
|
523 |
+
'sentiment': 'Neutral',
|
524 |
+
'start': 3},
|
525 |
+
{'aspect': 'documentation',
|
526 |
+
'confidence': 0.5204463601112366,
|
527 |
+
'end': 54,
|
528 |
+
'extractor_label': 'ASP-Negative',
|
529 |
+
'extractor_score': 0.5204463601112366,
|
530 |
+
'probability': {'Negative': 0.5204463601112366,
|
531 |
+
'Neutral': 0.2397768199443817,
|
532 |
+
'Positive': 0.2397768199443817},
|
533 |
+
'sentiment': 'Negative',
|
534 |
+
'start': 40}],
|
535 |
+
'positions': [[3, 18], [40, 54]],
|
536 |
+
'sentiments': ['Neutral', 'Negative'],
|
537 |
+
'text': 'The user interface is brilliant, but the documentation is a total mess.'},
|
538 |
+
{'aspects': ['牛排', '服务'],
|
539 |
+
'confidence': [0.5346122980117798, 0.5622819066047668],
|
540 |
+
'details': [{'aspect': '牛排',
|
541 |
+
'confidence': 0.5346122980117798,
|
542 |
+
'end': 7,
|
543 |
+
'extractor_label': 'ASP-Positive',
|
544 |
+
'extractor_score': 0.5346122980117798,
|
545 |
+
'probability': {'Negative': 0.2326938509941101,
|
546 |
+
'Neutral': 0.2326938509941101,
|
547 |
+
'Positive': 0.5346122980117798},
|
548 |
+
'sentiment': 'Positive',
|
549 |
+
'start': 5},
|
550 |
+
{'aspect': '服务',
|
551 |
+
'confidence': 0.5622819066047668,
|
552 |
+
'end': 15,
|
553 |
+
'extractor_label': 'ASP-Negative',
|
554 |
+
'extractor_score': 0.5622819066047668,
|
555 |
+
'probability': {'Negative': 0.5622819066047668,
|
556 |
+
'Neutral': 0.21885904669761658,
|
557 |
+
'Positive': 0.21885904669761658},
|
558 |
+
'sentiment': 'Negative',
|
559 |
+
'start': 13}],
|
560 |
+
'positions': [[5, 7], [13, 15]],
|
561 |
+
'sentiments': ['Positive', 'Negative'],
|
562 |
+
'text': '这家餐厅的牛排很好吃,但是服务很慢。'},
|
563 |
+
{'aspects': ['batería', 'cámara'],
|
564 |
+
'confidence': [0.43364980816841125, 0.44364821910858154],
|
565 |
+
'details': [{'aspect': 'batería',
|
566 |
+
'confidence': 0.43364980816841125,
|
567 |
+
'end': 10,
|
568 |
+
'extractor_label': 'ASP-Neutral',
|
569 |
+
'extractor_score': 0.43364980816841125,
|
570 |
+
'probability': {'Negative': 0.2831750959157944,
|
571 |
+
'Neutral': 0.43364980816841125,
|
572 |
+
'Positive': 0.2831750959157944},
|
573 |
+
'sentiment': 'Neutral',
|
574 |
+
'start': 2},
|
575 |
+
{'aspect': 'cámara',
|
576 |
+
'confidence': 0.44364821910858154,
|
577 |
+
'end': 40,
|
578 |
+
'extractor_label': 'ASP-Neutral',
|
579 |
+
'extractor_score': 0.44364821910858154,
|
580 |
+
'probability': {'Negative': 0.27817589044570923,
|
581 |
+
'Neutral': 0.44364821910858154,
|
582 |
+
'Positive': 0.27817589044570923},
|
583 |
+
'sentiment': 'Neutral',
|
584 |
+
'start': 33}],
|
585 |
+
'positions': [[2, 10], [33, 40]],
|
586 |
+
'sentiments': ['Neutral', 'Neutral'],
|
587 |
+
'text': 'La batería es malísima, aunque la cámara está muy bien.'},
|
588 |
+
{'aspects': ['film', 'fin'],
|
589 |
+
'confidence': [0.6539797782897949, 0.41829001903533936],
|
590 |
+
'details': [{'aspect': 'film',
|
591 |
+
'confidence': 0.6539797782897949,
|
592 |
+
'end': 7,
|
593 |
+
'extractor_label': 'ASP-Positive',
|
594 |
+
'extractor_score': 0.6539797782897949,
|
595 |
+
'probability': {'Negative': 0.17301011085510254,
|
596 |
+
'Neutral': 0.17301011085510254,
|
597 |
+
'Positive': 0.6539797782897949},
|
598 |
+
'sentiment': 'Positive',
|
599 |
+
'start': 2},
|
600 |
+
{'aspect': 'fin',
|
601 |
+
'confidence': 0.41829001903533936,
|
602 |
+
'end': 36,
|
603 |
+
'extractor_label': 'ASP-Negative',
|
604 |
+
'extractor_score': 0.41829001903533936,
|
605 |
+
'probability': {'Negative': 0.41829001903533936,
|
606 |
+
'Neutral': 0.2908549904823303,
|
607 |
+
'Positive': 0.2908549904823303},
|
608 |
+
'sentiment': 'Negative',
|
609 |
+
'start': 32}],
|
610 |
+
'positions': [[2, 7], [32, 36]],
|
611 |
+
'sentiments': ['Positive', 'Negative'],
|
612 |
+
'text': 'Le film était captivant, mais la fin était décevante.'},
|
613 |
+
{'aspects': ['Auto', 'Sitze'],
|
614 |
+
'confidence': [0.5750167965888977, 0.4986541271209717],
|
615 |
+
'details': [{'aspect': 'Auto',
|
616 |
+
'confidence': 0.5750167965888977,
|
617 |
+
'end': 8,
|
618 |
+
'extractor_label': 'ASP-Neutral',
|
619 |
+
'extractor_score': 0.5750167965888977,
|
620 |
+
'probability': {'Negative': 0.21249160170555115,
|
621 |
+
'Neutral': 0.5750167965888977,
|
622 |
+
'Positive': 0.21249160170555115},
|
623 |
+
'sentiment': 'Neutral',
|
624 |
+
'start': 3},
|
625 |
+
{'aspect': 'Sitze',
|
626 |
+
'confidence': 0.4986541271209717,
|
627 |
+
'end': 41,
|
628 |
+
'extractor_label': 'ASP-Neutral',
|
629 |
+
'extractor_score': 0.4986541271209717,
|
630 |
+
'probability': {'Negative': 0.25067293643951416,
|
631 |
+
'Neutral': 0.4986541271209717,
|
632 |
+
'Positive': 0.25067293643951416},
|
633 |
+
'sentiment': 'Neutral',
|
634 |
+
'start': 35}],
|
635 |
+
'positions': [[3, 8], [35, 41]],
|
636 |
+
'sentiments': ['Neutral', 'Neutral'],
|
637 |
+
'text': 'Das Auto ist sehr sparsam, aber die Sitze sind unbequem.'},
|
638 |
+
{'aspects': ['design', 'software'],
|
639 |
+
'confidence': [0.6298937201499939, 0.6058070063591003],
|
640 |
+
'details': [{'aspect': 'design',
|
641 |
+
'confidence': 0.6298937201499939,
|
642 |
+
'end': 9,
|
643 |
+
'extractor_label': 'ASP-Neutral',
|
644 |
+
'extractor_score': 0.6298937201499939,
|
645 |
+
'probability': {'Negative': 0.18505313992500305,
|
646 |
+
'Neutral': 0.6298937201499939,
|
647 |
+
'Positive': 0.18505313992500305},
|
648 |
+
'sentiment': 'Neutral',
|
649 |
+
'start': 2},
|
650 |
+
{'aspect': 'software',
|
651 |
+
'confidence': 0.6058070063591003,
|
652 |
+
'end': 38,
|
653 |
+
'extractor_label': 'ASP-Neutral',
|
654 |
+
'extractor_score': 0.6058070063591003,
|
655 |
+
'probability': {'Negative': 0.19709649682044983,
|
656 |
+
'Neutral': 0.6058070063591003,
|
657 |
+
'Positive': 0.19709649682044983},
|
658 |
+
'sentiment': 'Neutral',
|
659 |
+
'start': 29}],
|
660 |
+
'positions': [[2, 9], [29, 38]],
|
661 |
+
'sentiments': ['Neutral', 'Neutral'],
|
662 |
+
'text': 'Il design è elegante, però il software è pieno di bug.'},
|
663 |
+
{'aspects': ['café'],
|
664 |
+
'confidence': [0.56500643491745],
|
665 |
+
'details': [{'aspect': 'café',
|
666 |
+
'confidence': 0.56500643491745,
|
667 |
+
'end': 42,
|
668 |
+
'extractor_label': 'ASP-Negative',
|
669 |
+
'extractor_score': 0.56500643491745,
|
670 |
+
'probability': {'Negative': 0.56500643491745,
|
671 |
+
'Neutral': 0.21749678254127502,
|
672 |
+
'Positive': 0.21749678254127502},
|
673 |
+
'sentiment': 'Negative',
|
674 |
+
'start': 37}],
|
675 |
+
'positions': [[37, 42]],
|
676 |
+
'sentiments': ['Negative'],
|
677 |
+
'text': 'O hotel tem uma vista incrível, mas o café da manhã é fraco.'},
|
678 |
+
{'aspects': ['Кни', 'пере'],
|
679 |
+
'confidence': [0.42165103554725647, 0.5683889389038086],
|
680 |
+
'details': [{'aspect': 'Кни',
|
681 |
+
'confidence': 0.42165103554725647,
|
682 |
+
'end': 3,
|
683 |
+
'extractor_label': 'ASP-Neutral',
|
684 |
+
'extractor_score': 0.42165103554725647,
|
685 |
+
'probability': {'Negative': 0.28917448222637177,
|
686 |
+
'Neutral': 0.42165103554725647,
|
687 |
+
'Positive': 0.28917448222637177},
|
688 |
+
'sentiment': 'Neutral',
|
689 |
+
'start': 0},
|
690 |
+
{'aspect': 'пере',
|
691 |
+
'confidence': 0.5683889389038086,
|
692 |
+
'end': 31,
|
693 |
+
'extractor_label': 'ASP-Neutral',
|
694 |
+
'extractor_score': 0.5683889389038086,
|
695 |
+
'probability': {'Negative': 0.2158055305480957,
|
696 |
+
'Neutral': 0.5683889389038086,
|
697 |
+
'Positive': 0.2158055305480957},
|
698 |
+
'sentiment': 'Neutral',
|
699 |
+
'start': 26}],
|
700 |
+
'positions': [[0, 3], [26, 31]],
|
701 |
+
'sentiments': ['Neutral', 'Neutral'],
|
702 |
+
'text': 'Книга очень интересная, но перевод оставляет желать лучшего.'},
|
703 |
+
{'aspects': ['バッテリー'],
|
704 |
+
'confidence': [0.5808011293411255],
|
705 |
+
'details': [{'aspect': 'バッテリー',
|
706 |
+
'confidence': 0.5808011293411255,
|
707 |
+
'end': 17,
|
708 |
+
'extractor_label': 'ASP-Negative',
|
709 |
+
'extractor_score': 0.5808011293411255,
|
710 |
+
'probability': {'Negative': 0.5808011293411255,
|
711 |
+
'Neutral': 0.20959943532943726,
|
712 |
+
'Positive': 0.20959943532943726},
|
713 |
+
'sentiment': 'Negative',
|
714 |
+
'start': 12}],
|
715 |
+
'positions': [[12, 17]],
|
716 |
+
'sentiments': ['Negative'],
|
717 |
+
'text': 'このアプリは便利だけど、バッテリーの消費が激しい。'},
|
718 |
+
{'aspects': ['음식', '가격'],
|
719 |
+
'confidence': [0.5432428121566772, 0.46728911995887756],
|
720 |
+
'details': [{'aspect': '음식',
|
721 |
+
'confidence': 0.5432428121566772,
|
722 |
+
'end': 2,
|
723 |
+
'extractor_label': 'ASP-Neutral',
|
724 |
+
'extractor_score': 0.5432428121566772,
|
725 |
+
'probability': {'Negative': 0.22837859392166138,
|
726 |
+
'Neutral': 0.5432428121566772,
|
727 |
+
'Positive': 0.22837859392166138},
|
728 |
+
'sentiment': 'Neutral',
|
729 |
+
'start': 0},
|
730 |
+
{'aspect': '가격',
|
731 |
+
'confidence': 0.46728911995887756,
|
732 |
+
'end': 13,
|
733 |
+
'extractor_label': 'ASP-Neutral',
|
734 |
+
'extractor_score': 0.46728911995887756,
|
735 |
+
'probability': {'Negative': 0.2663554400205612,
|
736 |
+
'Neutral': 0.46728911995887756,
|
737 |
+
'Positive': 0.2663554400205612},
|
738 |
+
'sentiment': 'Neutral',
|
739 |
+
'start': 10}],
|
740 |
+
'positions': [[0, 2], [10, 13]],
|
741 |
+
'sentiments': ['Neutral', 'Neutral'],
|
742 |
+
'text': '음식은 맛있었지만, 가격이 너무 비쌌어요.'},
|
743 |
+
{'aspects': ['الخ', 'دمة', 'الموق', 'ع'],
|
744 |
+
'confidence': [0.5339547991752625, 0.5055423378944397, 0.44124436378479004, 0.4563024640083313],
|
745 |
+
'details': [{'aspect': 'الخ',
|
746 |
+
'confidence': 0.5339547991752625,
|
747 |
+
'end': 3,
|
748 |
+
'extractor_label': 'ASP-Neutral',
|
749 |
+
'extractor_score': 0.5339547991752625,
|
750 |
+
'probability': {'Negative': 0.23302260041236877,
|
751 |
+
'Neutral': 0.5339547991752625,
|
752 |
+
'Positive': 0.23302260041236877},
|
753 |
+
'sentiment': 'Neutral',
|
754 |
+
'start': 0},
|
755 |
+
{'aspect': 'دمة',
|
756 |
+
'confidence': 0.5055423378944397,
|
757 |
+
'end': 6,
|
758 |
+
'extractor_label': 'ASP-Positive',
|
759 |
+
'extractor_score': 0.5055423378944397,
|
760 |
+
'probability': {'Negative': 0.24722883105278015,
|
761 |
+
'Neutral': 0.24722883105278015,
|
762 |
+
'Positive': 0.5055423378944397},
|
763 |
+
'sentiment': 'Positive',
|
764 |
+
'start': 3},
|
765 |
+
{'aspect': 'الموق',
|
766 |
+
'confidence': 0.44124436378479004,
|
767 |
+
'end': 24,
|
768 |
+
'extractor_label': 'ASP-Neutral',
|
769 |
+
'extractor_score': 0.44124436378479004,
|
770 |
+
'probability': {'Negative': 0.279377818107605,
|
771 |
+
'Neutral': 0.44124436378479004,
|
772 |
+
'Positive': 0.279377818107605},
|
773 |
+
'sentiment': 'Neutral',
|
774 |
+
'start': 18},
|
775 |
+
{'aspect': 'ع',
|
776 |
+
'confidence': 0.4563024640083313,
|
777 |
+
'end': 25,
|
778 |
+
'extractor_label': 'ASP-Negative',
|
779 |
+
'extractor_score': 0.4563024640083313,
|
780 |
+
'probability': {'Negative': 0.4563024640083313,
|
781 |
+
'Neutral': 0.27184876799583435,
|
782 |
+
'Positive': 0.27184876799583435},
|
783 |
+
'sentiment': 'Negative',
|
784 |
+
'start': 24}],
|
785 |
+
'positions': [[0, 3], [3, 6], [18, 24], [24, 25]],
|
786 |
+
'sentiments': ['Neutral', 'Positive', 'Neutral', 'Negative'],
|
787 |
+
'text': 'الخدمة ممتازة، لكن الموقع صعب الوصول إليه.'},
|
788 |
+
{'aspects': ['कैमरा', 'बैट', 'री', 'लाइफ'],
|
789 |
+
'confidence': [0.45512592792510986, 0.47939613461494446, 0.435901015996933, 0.46086522936820984],
|
790 |
+
'details': [{'aspect': 'कैमरा',
|
791 |
+
'confidence': 0.45512592792510986,
|
792 |
+
'end': 13,
|
793 |
+
'extractor_label': 'ASP-Neutral',
|
794 |
+
'extractor_score': 0.45512592792510986,
|
795 |
+
'probability': {'Negative': 0.27243703603744507,
|
796 |
+
'Neutral': 0.45512592792510986,
|
797 |
+
'Positive': 0.27243703603744507},
|
798 |
+
'sentiment': 'Neutral',
|
799 |
+
'start': 7},
|
800 |
+
{'aspect': 'बैट',
|
801 |
+
'confidence': 0.47939613461494446,
|
802 |
+
'end': 34,
|
803 |
+
'extractor_label': 'ASP-Neutral',
|
804 |
+
'extractor_score': 0.47939613461494446,
|
805 |
+
'probability': {'Negative': 0.26030193269252777,
|
806 |
+
'Neutral': 0.47939613461494446,
|
807 |
+
'Positive': 0.26030193269252777},
|
808 |
+
'sentiment': 'Neutral',
|
809 |
+
'start': 30},
|
810 |
+
{'aspect': 'री',
|
811 |
+
'confidence': 0.435901015996933,
|
812 |
+
'end': 36,
|
813 |
+
'extractor_label': 'ASP-Negative',
|
814 |
+
'extractor_score': 0.435901015996933,
|
815 |
+
'probability': {'Negative': 0.435901015996933,
|
816 |
+
'Neutral': 0.2820494920015335,
|
817 |
+
'Positive': 0.2820494920015335},
|
818 |
+
'sentiment': 'Negative',
|
819 |
+
'start': 34},
|
820 |
+
{'aspect': 'लाइफ',
|
821 |
+
'confidence': 0.46086522936820984,
|
822 |
+
'end': 41,
|
823 |
+
'extractor_label': 'ASP-Neutral',
|
824 |
+
'extractor_score': 0.46086522936820984,
|
825 |
+
'probability': {'Negative': 0.2695673853158951,
|
826 |
+
'Neutral': 0.46086522936820984,
|
827 |
+
'Positive': 0.2695673853158951},
|
828 |
+
'sentiment': 'Neutral',
|
829 |
+
'start': 36}],
|
830 |
+
'positions': [[7, 13], [30, 34], [34, 36], [36, 41]],
|
831 |
+
'sentiments': ['Neutral', 'Neutral', 'Negative', 'Neutral'],
|
832 |
+
'text': 'फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।'},
|
833 |
+
{'aspects': ['locatie', 'personeel'],
|
834 |
+
'confidence': [0.4961163103580475, 0.4840226173400879],
|
835 |
+
'details': [{'aspect': 'locatie',
|
836 |
+
'confidence': 0.4961163103580475,
|
837 |
+
'end': 10,
|
838 |
+
'extractor_label': 'ASP-Positive',
|
839 |
+
'extractor_score': 0.4961163103580475,
|
840 |
+
'probability': {'Negative': 0.25194184482097626,
|
841 |
+
'Neutral': 0.25194184482097626,
|
842 |
+
'Positive': 0.4961163103580475},
|
843 |
+
'sentiment': 'Positive',
|
844 |
+
'start': 2},
|
845 |
+
{'aspect': 'personeel',
|
846 |
+
'confidence': 0.4840226173400879,
|
847 |
+
'end': 46,
|
848 |
+
'extractor_label': 'ASP-Negative',
|
849 |
+
'extractor_score': 0.4840226173400879,
|
850 |
+
'probability': {'Negative': 0.4840226173400879,
|
851 |
+
'Neutral': 0.25798869132995605,
|
852 |
+
'Positive': 0.25798869132995605},
|
853 |
+
'sentiment': 'Negative',
|
854 |
+
'start': 36}],
|
855 |
+
'positions': [[2, 10], [36, 46]],
|
856 |
+
'sentiments': ['Positive', 'Negative'],
|
857 |
+
'text': 'De locatie is perfect, alleen is het personeel onvriendelijk.'},
|
858 |
+
{'aspects': ['Bok', 'handling'],
|
859 |
+
'confidence': [0.46991148591041565, 0.4475855529308319],
|
860 |
+
'details': [{'aspect': 'Bok',
|
861 |
+
'confidence': 0.46991148591041565,
|
862 |
+
'end': 3,
|
863 |
+
'extractor_label': 'ASP-Neutral',
|
864 |
+
'extractor_score': 0.46991148591041565,
|
865 |
+
'probability': {'Negative': 0.2650442570447922,
|
866 |
+
'Neutral': 0.46991148591041565,
|
867 |
+
'Positive': 0.2650442570447922},
|
868 |
+
'sentiment': 'Neutral',
|
869 |
+
'start': 0},
|
870 |
+
{'aspect': 'handling',
|
871 |
+
'confidence': 0.4475855529308319,
|
872 |
+
'end': 33,
|
873 |
+
'extractor_label': 'ASP-Negative',
|
874 |
+
'extractor_score': 0.4475855529308319,
|
875 |
+
'probability': {'Negative': 0.4475855529308319,
|
876 |
+
'Neutral': 0.27620722353458405,
|
877 |
+
'Positive': 0.27620722353458405},
|
878 |
+
'sentiment': 'Negative',
|
879 |
+
'start': 24}],
|
880 |
+
'positions': [[0, 3], [24, 33]],
|
881 |
+
'sentiments': ['Neutral', 'Negative'],
|
882 |
+
'text': 'Boken är välskriven, men handlingen är förutsägbar.'},
|
883 |
+
{'aspects': ['Grafika', 'g', 'fabuła'],
|
884 |
+
'confidence': [0.5523369312286377, 0.38001376390457153, 0.5456185936927795],
|
885 |
+
'details': [{'aspect': 'Grafika',
|
886 |
+
'confidence': 0.5523369312286377,
|
887 |
+
'end': 7,
|
888 |
+
'extractor_label': 'ASP-Neutral',
|
889 |
+
'extractor_score': 0.5523369312286377,
|
890 |
+
'probability': {'Negative': 0.22383153438568115,
|
891 |
+
'Neutral': 0.5523369312286377,
|
892 |
+
'Positive': 0.22383153438568115},
|
893 |
+
'sentiment': 'Neutral',
|
894 |
+
'start': 0},
|
895 |
+
{'aspect': 'g',
|
896 |
+
'confidence': 0.38001376390457153,
|
897 |
+
'end': 11,
|
898 |
+
'extractor_label': 'ASP-Neutral',
|
899 |
+
'extractor_score': 0.38001376390457153,
|
900 |
+
'probability': {'Negative': 0.30999311804771423,
|
901 |
+
'Neutral': 0.38001376390457153,
|
902 |
+
'Positive': 0.30999311804771423},
|
903 |
+
'sentiment': 'Neutral',
|
904 |
+
'start': 9},
|
905 |
+
{'aspect': 'fabuła',
|
906 |
+
'confidence': 0.5456185936927795,
|
907 |
+
'end': 43,
|
908 |
+
'extractor_label': 'ASP-Neutral',
|
909 |
+
'extractor_score': 0.5456185936927795,
|
910 |
+
'probability': {'Negative': 0.22719070315361023,
|
911 |
+
'Neutral': 0.5456185936927795,
|
912 |
+
'Positive': 0.22719070315361023},
|
913 |
+
'sentiment': 'Neutral',
|
914 |
+
'start': 36}],
|
915 |
+
'positions': [[0, 7], [9, 11], [36, 43]],
|
916 |
+
'sentiments': ['Neutral', 'Neutral', 'Neutral'],
|
917 |
+
'text': 'Grafika w grze jest niesamowita, ale fabuła jest nudna.'},
|
918 |
+
{'aspects': ['kargo'],
|
919 |
+
'confidence': [0.6405377388000488],
|
920 |
+
'details': [{'aspect': 'kargo',
|
921 |
+
'confidence': 0.6405377388000488,
|
922 |
+
'end': 33,
|
923 |
+
'extractor_label': 'ASP-Negative',
|
924 |
+
'extractor_score': 0.6405377388000488,
|
925 |
+
'probability': {'Negative': 0.6405377388000488,
|
926 |
+
'Neutral': 0.17973113059997559,
|
927 |
+
'Positive': 0.17973113059997559},
|
928 |
+
'sentiment': 'Negative',
|
929 |
+
'start': 27}],
|
930 |
+
'positions': [[27, 33]],
|
931 |
+
'sentiments': ['Negative'],
|
932 |
+
'text': 'Ürün kaliteli görünüyor ama kargo çok geç geldi.'},
|
933 |
+
{'aspects': ['Ch', 'lượng âm thanh'],
|
934 |
+
'confidence': [0.6112579107284546, 0.6159068942070007],
|
935 |
+
'details': [{'aspect': 'Ch',
|
936 |
+
'confidence': 0.6112579107284546,
|
937 |
+
'end': 2,
|
938 |
+
'extractor_label': 'ASP-Positive',
|
939 |
+
'extractor_score': 0.6112579107284546,
|
940 |
+
'probability': {'Negative': 0.1943710446357727,
|
941 |
+
'Neutral': 0.1943710446357727,
|
942 |
+
'Positive': 0.6112579107284546},
|
943 |
+
'sentiment': 'Positive',
|
944 |
+
'start': 0},
|
945 |
+
{'aspect': 'lượng âm thanh',
|
946 |
+
'confidence': 0.6159068942070007,
|
947 |
+
'end': 19,
|
948 |
+
'extractor_label': 'ASP-Positive',
|
949 |
+
'extractor_score': 0.6159068942070007,
|
950 |
+
'probability': {'Negative': 0.19204655289649963,
|
951 |
+
'Neutral': 0.19204655289649963,
|
952 |
+
'Positive': 0.6159068942070007},
|
953 |
+
'sentiment': 'Positive',
|
954 |
+
'start': 4}],
|
955 |
+
'positions': [[0, 2], [4, 19]],
|
956 |
+
'sentiments': ['Positive', 'Positive'],
|
957 |
+
'text': 'Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.'},
|
958 |
+
{'aspects': [],
|
959 |
+
'confidence': [],
|
960 |
+
'details': [],
|
961 |
+
'positions': [],
|
962 |
+
'sentiments': [],
|
963 |
+
'text': 'การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน'},
|
964 |
+
{'aspects': ['τοποθεσία', 'δω', 'μάτιο'],
|
965 |
+
'confidence': [0.6473245620727539, 0.49225592613220215, 0.4857552945613861],
|
966 |
+
'details': [{'aspect': 'τοποθεσία',
|
967 |
+
'confidence': 0.6473245620727539,
|
968 |
+
'end': 11,
|
969 |
+
'extractor_label': 'ASP-Neutral',
|
970 |
+
'extractor_score': 0.6473245620727539,
|
971 |
+
'probability': {'Negative': 0.17633771896362305,
|
972 |
+
'Neutral': 0.6473245620727539,
|
973 |
+
'Positive': 0.17633771896362305},
|
974 |
+
'sentiment': 'Neutral',
|
975 |
+
'start': 1},
|
976 |
+
{'aspect': 'δω',
|
977 |
+
'confidence': 0.49225592613220215,
|
978 |
+
'end': 40,
|
979 |
+
'extractor_label': 'ASP-Negative',
|
980 |
+
'extractor_score': 0.49225592613220215,
|
981 |
+
'probability': {'Negative': 0.49225592613220215,
|
982 |
+
'Neutral': 0.2538720369338989,
|
983 |
+
'Positive': 0.2538720369338989},
|
984 |
+
'sentiment': 'Negative',
|
985 |
+
'start': 37},
|
986 |
+
{'aspect': 'μάτιο',
|
987 |
+
'confidence': 0.4857552945613861,
|
988 |
+
'end': 45,
|
989 |
+
'extractor_label': 'ASP-Neutral',
|
990 |
+
'extractor_score': 0.4857552945613861,
|
991 |
+
'probability': {'Negative': 0.25712235271930695,
|
992 |
+
'Neutral': 0.4857552945613861,
|
993 |
+
'Positive': 0.25712235271930695},
|
994 |
+
'sentiment': 'Neutral',
|
995 |
+
'start': 40}],
|
996 |
+
'positions': [[1, 11], [37, 40], [40, 45]],
|
997 |
+
'sentiments': ['Neutral', 'Negative', 'Neutral'],
|
998 |
+
'text': 'Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.'},
|
999 |
+
{'aspects': ['ה', 'משחק'],
|
1000 |
+
'confidence': [0.4173576831817627, 0.39395496249198914],
|
1001 |
+
'details': [{'aspect': 'ה',
|
1002 |
+
'confidence': 0.4173576831817627,
|
1003 |
+
'end': 1,
|
1004 |
+
'extractor_label': 'ASP-Positive',
|
1005 |
+
'extractor_score': 0.4173576831817627,
|
1006 |
+
'probability': {'Negative': 0.29132115840911865,
|
1007 |
+
'Neutral': 0.29132115840911865,
|
1008 |
+
'Positive': 0.4173576831817627},
|
1009 |
+
'sentiment': 'Positive',
|
1010 |
+
'start': 0},
|
1011 |
+
{'aspect': 'משחק',
|
1012 |
+
'confidence': 0.39395496249198914,
|
1013 |
+
'end': 5,
|
1014 |
+
'extractor_label': 'ASP-Positive',
|
1015 |
+
'extractor_score': 0.39395496249198914,
|
1016 |
+
'probability': {'Negative': 0.30302251875400543,
|
1017 |
+
'Neutral': 0.30302251875400543,
|
1018 |
+
'Positive': 0.39395496249198914},
|
1019 |
+
'sentiment': 'Positive',
|
1020 |
+
'start': 1}],
|
1021 |
+
'positions': [[0, 1], [1, 5]],
|
1022 |
+
'sentiments': ['Positive', 'Positive'],
|
1023 |
+
'text': 'המשחק מהנה, אבל יש בו יותר מדי פרסומות.'},
|
1024 |
+
{'aspects': ['Pons', 'el', 'tetapi'],
|
1025 |
+
'confidence': [0.59271240234375, 0.2814190089702606, 0.562650740146637],
|
1026 |
+
'details': [{'aspect': 'Pons',
|
1027 |
+
'confidence': 0.59271240234375,
|
1028 |
+
'end': 4,
|
1029 |
+
'extractor_label': 'ASP-Neutral',
|
1030 |
+
'extractor_score': 0.59271240234375,
|
1031 |
+
'probability': {'Negative': 0.203643798828125,
|
1032 |
+
'Neutral': 0.59271240234375,
|
1033 |
+
'Positive': 0.203643798828125},
|
1034 |
+
'sentiment': 'Neutral',
|
1035 |
+
'start': 0},
|
1036 |
+
{'aspect': 'el',
|
1037 |
+
'confidence': 0.2814190089702606,
|
1038 |
+
'end': 6,
|
1039 |
+
'extractor_label': 'ASP-Neutral',
|
1040 |
+
'extractor_score': 0.2814190089702606,
|
1041 |
+
'probability': {'Negative': 0.3592904955148697,
|
1042 |
+
'Neutral': 0.2814190089702606,
|
1043 |
+
'Positive': 0.3592904955148697},
|
1044 |
+
'sentiment': 'Neutral',
|
1045 |
+
'start': 4},
|
1046 |
+
{'aspect': 'tetapi',
|
1047 |
+
'confidence': 0.562650740146637,
|
1048 |
+
'end': 24,
|
1049 |
+
'extractor_label': 'ASP-Neutral',
|
1050 |
+
'extractor_score': 0.562650740146637,
|
1051 |
+
'probability': {'Negative': 0.21867462992668152,
|
1052 |
+
'Neutral': 0.562650740146637,
|
1053 |
+
'Positive': 0.21867462992668152},
|
1054 |
+
'sentiment': 'Neutral',
|
1055 |
+
'start': 17}],
|
1056 |
+
'positions': [[0, 4], [4, 6], [17, 24]],
|
1057 |
+
'sentiments': ['Neutral', 'Neutral', 'Neutral'],
|
1058 |
+
'text': 'Ponsel ini cepat, tetapi cenderung cepat panas.'},
|
1059 |
+
{'aspects': ['Ohjelma', 'käyttöliittymä'],
|
1060 |
+
'confidence': [0.5031888484954834, 0.48775985836982727],
|
1061 |
+
'details': [{'aspect': 'Ohjelma',
|
1062 |
+
'confidence': 0.5031888484954834,
|
1063 |
+
'end': 7,
|
1064 |
+
'extractor_label': 'ASP-Neutral',
|
1065 |
+
'extractor_score': 0.5031888484954834,
|
1066 |
+
'probability': {'Negative': 0.2484055757522583,
|
1067 |
+
'Neutral': 0.5031888484954834,
|
1068 |
+
'Positive': 0.2484055757522583},
|
1069 |
+
'sentiment': 'Neutral',
|
1070 |
+
'start': 0},
|
1071 |
+
{'aspect': 'käyttöliittymä',
|
1072 |
+
'confidence': 0.48775985836982727,
|
1073 |
+
'end': 40,
|
1074 |
+
'extractor_label': 'ASP-Neutral',
|
1075 |
+
'extractor_score': 0.48775985836982727,
|
1076 |
+
'probability': {'Negative': 0.25612007081508636,
|
1077 |
+
'Neutral': 0.48775985836982727,
|
1078 |
+
'Positive': 0.25612007081508636},
|
1079 |
+
'sentiment': 'Neutral',
|
1080 |
+
'start': 25}],
|
1081 |
+
'positions': [[0, 7], [25, 40]],
|
1082 |
+
'sentiments': ['Neutral', 'Neutral'],
|
1083 |
+
'text': 'Ohjelma on tehokas, mutta käyttöliittymä on sekava.'},
|
1084 |
+
{'aspects': ['Maden', 'portion'],
|
1085 |
+
'confidence': [0.4489361047744751, 0.544648289680481],
|
1086 |
+
'details': [{'aspect': 'Maden',
|
1087 |
+
'confidence': 0.4489361047744751,
|
1088 |
+
'end': 5,
|
1089 |
+
'extractor_label': 'ASP-Neutral',
|
1090 |
+
'extractor_score': 0.4489361047744751,
|
1091 |
+
'probability': {'Negative': 0.27553194761276245,
|
1092 |
+
'Neutral': 0.4489361047744751,
|
1093 |
+
'Positive': 0.27553194761276245},
|
1094 |
+
'sentiment': 'Neutral',
|
1095 |
+
'start': 0},
|
1096 |
+
{'aspect': 'portion',
|
1097 |
+
'confidence': 0.544648289680481,
|
1098 |
+
'end': 29,
|
1099 |
+
'extractor_label': 'ASP-Negative',
|
1100 |
+
'extractor_score': 0.544648289680481,
|
1101 |
+
'probability': {'Negative': 0.544648289680481,
|
1102 |
+
'Neutral': 0.22767585515975952,
|
1103 |
+
'Positive': 0.22767585515975952},
|
1104 |
+
'sentiment': 'Negative',
|
1105 |
+
'start': 21}],
|
1106 |
+
'positions': [[0, 5], [21, 29]],
|
1107 |
+
'sentiments': ['Neutral', 'Negative'],
|
1108 |
+
'text': 'Maden var lækker, men portionerne var for små.'},
|
1109 |
+
{'aspects': ['Počítač', 'software'],
|
1110 |
+
'confidence': [0.507230281829834, 0.5066105723381042],
|
1111 |
+
'details': [{'aspect': 'Počítač',
|
1112 |
+
'confidence': 0.507230281829834,
|
1113 |
+
'end': 7,
|
1114 |
+
'extractor_label': 'ASP-Neutral',
|
1115 |
+
'extractor_score': 0.507230281829834,
|
1116 |
+
'probability': {'Negative': 0.246384859085083,
|
1117 |
+
'Neutral': 0.507230281829834,
|
1118 |
+
'Positive': 0.246384859085083},
|
1119 |
+
'sentiment': 'Neutral',
|
1120 |
+
'start': 0},
|
1121 |
+
{'aspect': 'software',
|
1122 |
+
'confidence': 0.5066105723381042,
|
1123 |
+
'end': 31,
|
1124 |
+
'extractor_label': 'ASP-Neutral',
|
1125 |
+
'extractor_score': 0.5066105723381042,
|
1126 |
+
'probability': {'Negative': 0.24669471383094788,
|
1127 |
+
'Neutral': 0.5066105723381042,
|
1128 |
+
'Positive': 0.24669471383094788},
|
1129 |
+
'sentiment': 'Neutral',
|
1130 |
+
'start': 22}],
|
1131 |
+
'positions': [[0, 7], [22, 31]],
|
1132 |
+
'sentiments': ['Neutral', 'Neutral'],
|
1133 |
+
'text': 'Počítač je rychlý, ale software je zastaralý.'}]
|
1134 |
+
"""
|