File size: 3,608 Bytes
10d995a 8356876 10d995a b493048 533d37e b573649 d9f8896 f7d04c2 533d37e 10d995a 3bb6bbf 1710191 b63691f ec6857f b63691f 10d995a 4d1a1db 10d995a f60eeb6 10d995a dc98dd8 7d92d6e dc98dd8 7d92d6e dc98dd8 7d92d6e dc98dd8 9e3f170 4e7949f 9e3f170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
tags:
- protein language model
datasets:
- Uniref50
---
# DistilProtBert
A distilled version of [ProtBert-UniRef100](https://huggingface.co/Rostlab/prot_bert) model.
In addition to cross entropy and cosine teacher-student losses, DistilProtBert was pretrained on a masked language modeling (MLM) objective and it only works with capital letter amino acids.
Check out our paper [DistilProtBert: A distilled protein language model used to distinguish between real proteins and their randomly shuffled counterparts](https://doi.org/10.1093/bioinformatics/btac474) for more details.
[Git](https://github.com/yarongef/DistilProtBert) repository.
# Model details
| **Model** | **# of parameters** | **# of hidden layers** | **Pretraining dataset** | **# of proteins** | **Pretraining hardware** |
|:--------------:|:-------------------:|:----------------------:|:-----------------------:|:------------------------------:|:------------------------:|
| ProtBert | 420M | 30 | UniRef100 | 216M | 512 16GB TPUs |
| DistilProtBert | 230M | 15 | UniRef50 | 43M | 5 v100 32GB GPUs |
## Intended uses & limitations
The model could be used for protein feature extraction or to be fine-tuned on downstream tasks.
### How to use
The model can be used the same as ProtBert and with ProtBert's tokenizer.
## Training data
DistilProtBert model was pretrained on [Uniref50](https://www.uniprot.org/downloads), a dataset consisting of ~43 million protein sequences (only sequences of length between 20 to 512 amino acids were used).
# Pretraining procedure
Preprocessing was done using ProtBert's tokenizer.
The details of the masking procedure for each sequence followed the original Bert (as mentioned in [ProtBert](https://huggingface.co/Rostlab/prot_bert)).
The model was pretrained on a single DGX cluster for 3 epochs in total. local batch size was 16, the optimizer used was AdamW with a learning rate of 5e-5 and mixed precision settings.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
| Task/Dataset | secondary structure (3-states) | Membrane |
|:-----:|:-----:|:-----:|
| CASP12 | 72 | |
| TS115 | 81 | |
| CB513 | 79 | |
| DeepLoc | | 86 |
Distinguish between proteins and their k-let shuffled versions:
_Singlet_ ([dataset](https://huggingface.co/datasets/yarongef/human_proteome_singlets))
| Model | AUC |
|:--------------:|:-------:|
| LSTM | 0.71 |
| ProtBert | 0.93 |
| DistilProtBert | 0.92 |
_Doublet_ ([dataset](https://huggingface.co/datasets/yarongef/human_proteome_doublets))
| Model | AUC |
|:--------------:|:-------:|
| LSTM | 0.68 |
| ProtBert | 0.92 |
| DistilProtBert | 0.91 |
_Triplet_ ([dataset](https://huggingface.co/datasets/yarongef/human_proteome_triplets))
| Model | AUC |
|:--------------:|:-------:|
| LSTM | 0.61 |
| ProtBert | 0.92 |
| DistilProtBert | 0.87 |
## **Citation**
If you use this model, please cite our paper:
```
@article {
author = {Geffen, Yaron and Ofran, Yanay and Unger, Ron},
title = {DistilProtBert: A distilled protein language model used to distinguish between real proteins and their randomly shuffled counterparts},
year = {2022},
doi = {10.1093/bioinformatics/btac474},
URL = {https://doi.org/10.1093/bioinformatics/btac474},
journal = {Bioinformatics}
}
``` |