Update README.md
Browse files
README.md
CHANGED
@@ -6,17 +6,140 @@ tags:
|
|
6 |
- transformers
|
7 |
- unsloth
|
8 |
- gemma3n
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
license: cc-by-4.0
|
|
|
|
|
10 |
language:
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
-
# Uploaded finetuned model
|
15 |
|
16 |
-
- **Developed by:** yasserrmd
|
17 |
-
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
6 |
- transformers
|
7 |
- unsloth
|
8 |
- gemma3n
|
9 |
+
- medical
|
10 |
+
- vision-language
|
11 |
+
- gemma
|
12 |
+
- ecg
|
13 |
+
- cardiology
|
14 |
+
- healthcare
|
15 |
license: cc-by-4.0
|
16 |
+
datasets:
|
17 |
+
- yasserrmd/pulse-ecg-instruct-subset
|
18 |
language:
|
19 |
- en
|
20 |
---
|
21 |
|
|
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
+
# yasserrmd/GemmaECG-Vision
|
25 |
+
|
26 |
+
`GemmaECG-Vision` is a fine-tuned vision-language model built on `google/gemma-3n-e2b`, designed for ECG image interpretation tasks. The model accepts a medical ECG image along with a clinical instruction prompt and generates a structured analysis suitable for triage or documentation use cases.
|
27 |
+
|
28 |
+
This model was developed using **Unsloth** for efficient fine-tuning and supports **image + text** inputs with medical task-specific prompt formatting. It is designed to run in **offline or edge environments**, enabling healthcare triage in resource-constrained settings.
|
29 |
+
|
30 |
+
## Model Objective
|
31 |
+
|
32 |
+
To assist healthcare professionals and emergency responders by providing AI-generated ECG analysis directly from medical images, without requiring internet access or cloud resources.
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
This model expects:
|
37 |
+
- An ECG image (`PIL.Image`)
|
38 |
+
- A textual instruction such as:
|
39 |
+
|
40 |
+
```
|
41 |
+
|
42 |
+
You are a clinical assistant specialized in ECG interpretation. Given an ECG image, generate a concise, structured, and medically accurate report.
|
43 |
+
|
44 |
+
Use this exact format:
|
45 |
+
|
46 |
+
Rhythm:
|
47 |
+
PR Interval:
|
48 |
+
QRS Duration:
|
49 |
+
Axis:
|
50 |
+
Bundle Branch Blocks:
|
51 |
+
Atrial Abnormalities:
|
52 |
+
Ventricular Hypertrophy:
|
53 |
+
Q Wave or QS Complexes:
|
54 |
+
T Wave Abnormalities:
|
55 |
+
ST Segment Changes:
|
56 |
+
Final Impression:
|
57 |
+
|
58 |
+
````
|
59 |
+
|
60 |
+
### Inference Example (Python)
|
61 |
+
|
62 |
+
```python
|
63 |
+
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
64 |
+
from PIL import Image
|
65 |
+
import torch
|
66 |
+
|
67 |
+
model_id = "yasserrmd/GemmaECG-Vision"
|
68 |
+
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to("cuda")
|
69 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
70 |
+
|
71 |
+
image = Image.open("example_ecg.png").convert("RGB")
|
72 |
+
|
73 |
+
messages = [
|
74 |
+
{
|
75 |
+
"role": "user",
|
76 |
+
"content": [
|
77 |
+
{"type": "image"},
|
78 |
+
{"type": "text", "text": "Interpret this ECG and provide a structured triage report."}
|
79 |
+
]
|
80 |
+
}
|
81 |
+
]
|
82 |
+
|
83 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
84 |
+
|
85 |
+
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
|
86 |
+
|
87 |
+
outputs = model.generate(
|
88 |
+
**inputs,
|
89 |
+
max_new_tokens=256,
|
90 |
+
temperature=1.0,
|
91 |
+
top_p=0.95,
|
92 |
+
top_k=64,
|
93 |
+
use_cache=True
|
94 |
+
)
|
95 |
+
|
96 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
97 |
+
print(result)
|
98 |
+
````
|
99 |
+
|
100 |
+
## Training Details
|
101 |
+
|
102 |
+
* **Framework**: Unsloth + TRL SFTTrainer
|
103 |
+
* **Hardware**: Google Colab Pro (L4)
|
104 |
+
* **Batch Size**: 2
|
105 |
+
* **Epochs**: 1
|
106 |
+
* **Learning Rate**: 2e-4
|
107 |
+
* **Scheduler**: Cosine
|
108 |
+
* **Loss**: CrossEntropy
|
109 |
+
* **Precision**: bfloat16
|
110 |
+
|
111 |
+
## Dataset
|
112 |
+
|
113 |
+
The training dataset is a curated subset of the [PULSE-ECG/ECGInstruct](https://huggingface.co/datasets/PULSE-ECG/ECGInstruct) dataset, reformatted for VLM instruction tuning.
|
114 |
+
|
115 |
+
* 3,272 samples of ECG image + structured instruction + clinical output
|
116 |
+
* Focused on realistic and medically relevant triage cases
|
117 |
+
|
118 |
+
Dataset link: [`yasserrmd/pulse-ecg-instruct-subset`](https://huggingface.co/datasets/yasserrmd/pulse-ecg-instruct-subset)
|
119 |
+
|
120 |
+
## Intended Use
|
121 |
+
|
122 |
+
* Emergency triage in offline settings
|
123 |
+
* On-device ECG assessment
|
124 |
+
* Integration with medical edge devices (Jetson, Pi, Android)
|
125 |
+
* Rapid analysis during disaster response
|
126 |
+
|
127 |
+
## Limitations
|
128 |
+
|
129 |
+
* Not intended to replace licensed medical professionals
|
130 |
+
* Accuracy may vary depending on image quality
|
131 |
+
* Model outputs should be reviewed by a clinician before action
|
132 |
+
|
133 |
+
## License
|
134 |
+
|
135 |
+
This model is licensed under **CC BY 4.0**. You are free to use, modify, and distribute it with attribution.
|
136 |
+
|
137 |
+
## Author
|
138 |
+
|
139 |
+
Mohamed Yasser
|
140 |
+
[Hugging Face Profile](https://huggingface.co/yasserrmd)
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
|
145 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|