Update README.md
Browse files
README.md
CHANGED
@@ -7,17 +7,149 @@ tags:
|
|
7 |
- transformers
|
8 |
- unsloth
|
9 |
- lfm2
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
language:
|
12 |
-
-
|
13 |
---
|
14 |
|
15 |
-
# Uploaded finetuned model
|
16 |
|
17 |
-
- **Developed by:** yasserrmd
|
18 |
-
- **License:** apache-2.0
|
19 |
-
- **Finetuned from model :** unsloth/LFM2-1.2B
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- transformers
|
8 |
- unsloth
|
9 |
- lfm2
|
10 |
+
- arabic
|
11 |
+
- dialect
|
12 |
+
- emirati
|
13 |
+
- conversational
|
14 |
+
- causal-lm
|
15 |
+
- instruction-tuned
|
16 |
+
- trl
|
17 |
+
license: cc-by-nc-4.0
|
18 |
language:
|
19 |
+
- ar
|
20 |
---
|
21 |
|
|
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
+
# kallamni-1.2b-v1m
|
25 |
|
26 |
+
**Kallamni 1.2B v1m** is a **1.2B parameter Arabic conversational model** fine-tuned specifically for **spoken Emirati Arabic (اللهجة الإماراتية المحكية)**.
|
27 |
+
It is designed to generate **natural, fluent, and culturally relevant** responses for daily-life conversations, rather than formal Modern Standard Arabic (MSA).
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
## Model Summary
|
32 |
+
|
33 |
+
* **Model type:** Causal LM, instruction-tuned for chat.
|
34 |
+
* **Languages:** Emirati Arabic dialect (spoken style).
|
35 |
+
* **Fine-tuning:** 3 epochs with LoRA adapters.
|
36 |
+
* **Frameworks:** [Unsloth](https://github.com/unslothai/unsloth) + [TRL](https://github.com/huggingface/trl).
|
37 |
+
* **Dataset:** 12,324 synthetic Emirati Arabic Q\&A pairs generated using **GPT-5** and **GPT-4o**.
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## Dataset
|
42 |
+
|
43 |
+
* **Size:** 12,324 examples.
|
44 |
+
* **Source:** Synthetic Q\&A pairs created via GPT-5 + GPT-4o, filtered for Emirati dialect.
|
45 |
+
* **Domains covered:**
|
46 |
+
|
47 |
+
* Daily life conversations (shopping, weather, greetings, family, transport).
|
48 |
+
* Social and cultural events (Eid, weddings, gatherings).
|
49 |
+
* Household and personal routines.
|
50 |
+
* **Format:** Chat-style examples with `<|im_start|>user` / `<|im_start|>assistant` tokens, e.g.:
|
51 |
+
|
52 |
+
```text
|
53 |
+
<|startoftext|><|im_start|>user
|
54 |
+
شو تسوي إذا انقطع الإنترنت في البيت؟<|im_end|>
|
55 |
+
<|im_start|>assistant
|
56 |
+
أول شي أتصل بالشركة، وإذا ما ردوا أستخدم داتا التلفون لين يرجع النت.<|im_end|>
|
57 |
+
```
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## ⚙️ Training
|
62 |
+
|
63 |
+
* **Frameworks:**
|
64 |
+
|
65 |
+
* **Unsloth** → optimized finetuning, memory efficiency, \~2× faster training.
|
66 |
+
* **TRL (SFTTrainer)** → supervised fine-tuning with instruction alignment.
|
67 |
+
* **Base model:** Lightweight 1.2B causal LM.
|
68 |
+
* **Epochs:** 3 full passes over the dataset.
|
69 |
+
* **Fine-tuning strategy:**
|
70 |
+
|
71 |
+
* LoRA adapters on attention + MLP layers.
|
72 |
+
* Chat template applied consistently with TRL.
|
73 |
+
|
74 |
+
---
|
75 |
+
|
76 |
+
## Usage
|
77 |
+
|
78 |
+
You can load and run the model with `transformers`:
|
79 |
+
|
80 |
+
```python
|
81 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
82 |
+
|
83 |
+
# Load model and tokenizer
|
84 |
+
model_id = "yasserrmd/kallamni-1.2b-v1m"
|
85 |
+
model = AutoModelForCausalLM.from_pretrained(
|
86 |
+
model_id,
|
87 |
+
device_map="auto",
|
88 |
+
torch_dtype="bfloat16",
|
89 |
+
# attn_implementation="flash_attention_2" # Uncomment if GPU supports it
|
90 |
+
)
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
92 |
+
|
93 |
+
# Generate answer
|
94 |
+
prompt = "شو تسوي إذا انقطع الإنترنت في البيت؟"
|
95 |
+
input_ids = tokenizer.apply_chat_template(
|
96 |
+
[{"role": "user", "content": prompt}],
|
97 |
+
add_generation_prompt=True,
|
98 |
+
return_tensors="pt",
|
99 |
+
tokenize=True,
|
100 |
+
).to(model.device)
|
101 |
+
|
102 |
+
output = model.generate(
|
103 |
+
input_ids,
|
104 |
+
do_sample=True,
|
105 |
+
temperature=0.3,
|
106 |
+
min_p=0.15,
|
107 |
+
repetition_penalty=1.05,
|
108 |
+
max_new_tokens=256,
|
109 |
+
)
|
110 |
+
|
111 |
+
print(tokenizer.decode(output[0], skip_special_tokens=False))
|
112 |
+
|
113 |
+
# Example output:
|
114 |
+
# <|startoftext|><|im_start|>user
|
115 |
+
# شو تسوي إذا انقطع الإنترنت في البيت؟<|im_end|>
|
116 |
+
# <|im_start|>assistant
|
117 |
+
# أول شي أتصل بالشركة، وإذا ما ردوا أستخدم داتا التلفون لين يرجع النت.<|im_end|>
|
118 |
+
```
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## Performance
|
123 |
+
|
124 |
+
* **Dialect accuracy:** \~85% Emirati consistency.
|
125 |
+
* **Answer relevance:** \~90% good/semi-good.
|
126 |
+
* **Weak cases:** occasional semi-formal phrasing or generic filler.
|
127 |
+
* **Strengths:**
|
128 |
+
|
129 |
+
* Culturally aligned Emirati expressions.
|
130 |
+
* Natural conversational length (8–15 words minimum).
|
131 |
+
* Balanced coverage of family, work, travel, and social contexts.
|
132 |
+
|
133 |
+
---
|
134 |
+
|
135 |
+
## Intended Use
|
136 |
+
|
137 |
+
* **Chatbots & voice assistants** for Emirati Arabic.
|
138 |
+
* **Language learning tools** for practicing dialect.
|
139 |
+
* **Dataset building block** for Gulf Arabic LLM research.
|
140 |
+
|
141 |
+
---
|
142 |
+
|
143 |
+
## Limitations
|
144 |
+
|
145 |
+
* May mix in some MSA or generic Arabic in rare cases.
|
146 |
+
* Not suitable for factual QA outside daily conversations.
|
147 |
+
* Not designed for professional/legal/medical contexts.
|
148 |
+
|
149 |
+
---
|
150 |
+
|
151 |
+
## Acknowledgements
|
152 |
+
|
153 |
+
* **Unsloth** team for efficient fine-tuning tooling.
|
154 |
+
* **TRL** from Hugging Face for alignment training.
|
155 |
+
* Synthetic dataset generation powered by **GPT-5** and **GPT-4o**.
|