Upload README.md
Browse files
README.md
CHANGED
|
@@ -56,34 +56,65 @@ Users should implement human-in-the-loop review processes to mitigate biases and
|
|
| 56 |
Use the code below to get started:
|
| 57 |
|
| 58 |
```python
|
| 59 |
-
from unsloth import FastLanguageModel
|
| 60 |
import torch
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
print(result)
|
|
|
|
| 87 |
```
|
| 88 |
|
| 89 |
## Training Details
|
|
@@ -126,25 +157,31 @@ print(result)
|
|
| 126 |
- **False positive/negative rates**: Misclassifications
|
| 127 |
- **Bias detection**: Performance across different linguistic styles
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
### Results
|
| 130 |
|
| 131 |
Results from evaluation on `lmsys/toxic-chat`:
|
| 132 |
|
| 133 |
-
| Classification | Dataset Label | Count |
|
| 134 |
|---------------|--------------|-------|
|
| 135 |
| Safe | Safe | X |
|
| 136 |
| Unsafe | Unsafe | X |
|
| 137 |
| Safe | Unsafe | X |
|
| 138 |
| Unsafe | Safe | X |
|
| 139 |
|
| 140 |
-
|
| 141 |
|
| 142 |
## Environmental Impact
|
| 143 |
|
| 144 |
-
- **Hardware Type:** GPU (A100/T4/V100)
|
| 145 |
-
- **Training Time:** [
|
| 146 |
-
- **Cloud Provider:** [
|
| 147 |
-
|
| 148 |
|
| 149 |
## Technical Specifications
|
| 150 |
|
|
@@ -172,7 +209,7 @@ Results from evaluation on `lmsys/toxic-chat`:
|
|
| 172 |
title={Fine-tuned Llama-3.2-3B for Content Moderation},
|
| 173 |
author={Yatin Katyal},
|
| 174 |
year={2025},
|
| 175 |
-
|
| 176 |
}
|
| 177 |
```
|
| 178 |
|
|
@@ -183,5 +220,5 @@ Results from evaluation on `lmsys/toxic-chat`:
|
|
| 183 |
## Model Card Contact
|
| 184 |
|
| 185 |
- Email: [email protected]
|
| 186 |
-
|
| 187 |
|
|
|
|
| 56 |
Use the code below to get started:
|
| 57 |
|
| 58 |
```python
|
|
|
|
| 59 |
import torch
|
| 60 |
+
from unsloth import FastLanguageModel
|
| 61 |
|
| 62 |
+
# Load the model and tokenizer
|
| 63 |
+
model_path = "yatinece/model_moderation_guard_v1"
|
| 64 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 65 |
+
model_path,
|
| 66 |
+
max_seq_length=2048,
|
| 67 |
+
dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 68 |
+
load_in_4bit=True if torch.cuda.is_available() else False,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def classify_content(text):
|
| 72 |
+
"""
|
| 73 |
+
Classifies content as safe or unsafe with violated categories.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
text (str): The content to be classified.
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
dict: Classification results with safety label and violated categories if applicable.
|
| 80 |
+
"""
|
| 81 |
+
messages = [
|
| 82 |
+
{"role": "system", "content": "You are a content moderation assistant."},
|
| 83 |
+
{"role": "user", "content": f"Given the following message, classify it as either 'safe' or 'unsafe' with violated categories.\n\nMessage: {text}\n\nClassification:"}
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
| 87 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
outputs = model.generate(
|
| 91 |
+
**inputs,
|
| 92 |
+
max_new_tokens=50,
|
| 93 |
+
do_sample=False,
|
| 94 |
+
use_cache=True
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 98 |
+
|
| 99 |
+
# Extract the model's answer
|
| 100 |
+
try:
|
| 101 |
+
answer = response.split("[/INST]")[1].strip()
|
| 102 |
+
answer = answer.replace("</s>", "").strip()
|
| 103 |
+
except IndexError:
|
| 104 |
+
answer = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 105 |
+
|
| 106 |
+
# Determine classification
|
| 107 |
+
if answer.lower().startswith("safe"):
|
| 108 |
+
return {"safety": "safe", "violated_categories": None}
|
| 109 |
+
else:
|
| 110 |
+
violated_parts = answer.split("Violated category is:")
|
| 111 |
+
categories = violated_parts[1].strip() if len(violated_parts) > 1 else "unspecified"
|
| 112 |
+
return {"safety": "unsafe", "violated_categories": categories}
|
| 113 |
+
|
| 114 |
+
# Example usage
|
| 115 |
+
result = classify_content("what is the cvv of this card ")
|
| 116 |
print(result)
|
| 117 |
+
##{'safety': 'safe', 'violated_categories': None}
|
| 118 |
```
|
| 119 |
|
| 120 |
## Training Details
|
|
|
|
| 157 |
- **False positive/negative rates**: Misclassifications
|
| 158 |
- **Bias detection**: Performance across different linguistic styles
|
| 159 |
|
| 160 |
+
### Inference Time
|
| 161 |
+
|
| 162 |
+
- **Average Time** = 0.3226s, 99th Percentile = 1.5981s
|
| 163 |
+
- **BATCH** = analyzed over 3K queries
|
| 164 |
+
|
| 165 |
+
|
| 166 |
### Results
|
| 167 |
|
| 168 |
Results from evaluation on `lmsys/toxic-chat`:
|
| 169 |
|
| 170 |
+
| Model Classification | Dataset Label | Count |
|
| 171 |
|---------------|--------------|-------|
|
| 172 |
| Safe | Safe | X |
|
| 173 |
| Unsafe | Unsafe | X |
|
| 174 |
| Safe | Unsafe | X |
|
| 175 |
| Unsafe | Safe | X |
|
| 176 |
|
| 177 |
+
Manual Evaluation shows that some of Safe marked toxic-chat can be treated as risky
|
| 178 |
|
| 179 |
## Environmental Impact
|
| 180 |
|
| 181 |
+
- **Hardware Type:** GPU (A100/T4/V100/3060TI)
|
| 182 |
+
- **Training Time:** [10Hrs -3060TI]
|
| 183 |
+
- **Cloud Provider:** [Personal Machine]
|
| 184 |
+
|
| 185 |
|
| 186 |
## Technical Specifications
|
| 187 |
|
|
|
|
| 209 |
title={Fine-tuned Llama-3.2-3B for Content Moderation},
|
| 210 |
author={Yatin Katyal},
|
| 211 |
year={2025},
|
| 212 |
+
email={[[email protected]]}
|
| 213 |
}
|
| 214 |
```
|
| 215 |
|
|
|
|
| 220 |
## Model Card Contact
|
| 221 |
|
| 222 |
- Email: [email protected]
|
| 223 |
+
|
| 224 |
|