yjoonjang commited on
Commit
27b686b
·
verified ·
1 Parent(s): 6675a49

Add new CrossEncoder model

Browse files
Files changed (6) hide show
  1. README.md +391 -0
  2. config.json +56 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +952 -0
README.md ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - generated_from_trainer
6
+ - dataset_size:1220
7
+ - loss:ListNetLoss
8
+ base_model: Alibaba-NLP/gte-reranker-modernbert-base
9
+ pipeline_tag: text-ranking
10
+ library_name: sentence-transformers
11
+ ---
12
+
13
+ # CrossEncoder based on Alibaba-NLP/gte-reranker-modernbert-base
14
+
15
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+ - **Model Type:** Cross Encoder
21
+ - **Base model:** [Alibaba-NLP/gte-reranker-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base) <!-- at revision 5e9cbf663291297cef19cd5fc58931e89f025e68 -->
22
+ - **Maximum Sequence Length:** 8192 tokens
23
+ - **Number of Output Labels:** 1 label
24
+ <!-- - **Training Dataset:** Unknown -->
25
+ <!-- - **Language:** Unknown -->
26
+ <!-- - **License:** Unknown -->
27
+
28
+ ### Model Sources
29
+
30
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
31
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
32
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
33
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
34
+
35
+ ## Usage
36
+
37
+ ### Direct Usage (Sentence Transformers)
38
+
39
+ First install the Sentence Transformers library:
40
+
41
+ ```bash
42
+ pip install -U sentence-transformers
43
+ ```
44
+
45
+ Then you can load this model and run inference.
46
+ ```python
47
+ from sentence_transformers import CrossEncoder
48
+
49
+ # Download from the 🤗 Hub
50
+ model = CrossEncoder("yjoonjang/preranker-gte-reranker-modernbert-base-listnetloss")
51
+ # Get scores for pairs of texts
52
+ pairs = [
53
+ ['Hi, I need a new username. My first name is John and my last name is Doe.', '{\n "name": "generate_username",\n "description": "Generate a unique username for a new user",\n "parameters": {\n "type": "object",\n "properties": {\n "first_name": {\n "type": "string",\n "description": "The first name of the user"\n },\n "last_name": {\n "type": "string",\n "description": "The last name of the user"\n }\n },\n "required": [\n "first_name",\n "last_name"\n ]\n }\n}'],
54
+ ['Hi, I need a new username. My first name is John and my last name is Doe.', '{\n "name": "create_invoice",\n "description": "Create a new invoice",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "items": {\n "type": "array",\n "items": {\n "type": "string"\n },\n "description": "The list of items in the invoice"\n },\n "total_amount": {\n "type": "number",\n "description": "The total amount of the invoice"\n }\n },\n "required": [\n "customer_name",\n "items",\n "total_amount"\n ]\n }\n}'],
55
+ ['Hi, I need a new username. My first name is John and my last name is Doe.', '{\n "name": "create_invoice",\n "description": "Create an invoice",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "amount": {\n "type": "number",\n "description": "The amount of the invoice"\n },\n "due_date": {\n "type": "string",\n "description": "The due date of the invoice"\n }\n },\n "required": [\n "customer_name",\n "amount"\n ]\n }\n}'],
56
+ ['Hi, I need a new username. My first name is John and my last name is Doe.', '{\n "name": "create_invoice",\n "description": "Create an invoice with specified details",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "order_items": {\n "type": "array",\n "items": {\n "type": "object",\n "properties": {\n "item_name": {\n "type": "string",\n "description": "The name of the item"\n },\n "quantity": {\n "type": "integer",\n "description": "The quantity of the item"\n },\n "unit_price": {\n "type": "number",\n "description": "The unit price of the item"\n }\n },\n "required": [\n "item_name",\n "quantity",\n "unit_price"\n ]\n }\n }\n },\n "required": [\n "customer_name",\n "order_items"\n ]\n }\n}'],
57
+ ['Hi, I need a new username. My first name is John and my last name is Doe.', '{\n "name": "generate_random_joke",\n "description": "Generate a random joke",\n "parameters": {}\n}'],
58
+ ]
59
+ scores = model.predict(pairs)
60
+ print(scores.shape)
61
+ # (5,)
62
+
63
+ # Or rank different texts based on similarity to a single text
64
+ ranks = model.rank(
65
+ 'Hi, I need a new username. My first name is John and my last name is Doe.',
66
+ [
67
+ '{\n "name": "generate_username",\n "description": "Generate a unique username for a new user",\n "parameters": {\n "type": "object",\n "properties": {\n "first_name": {\n "type": "string",\n "description": "The first name of the user"\n },\n "last_name": {\n "type": "string",\n "description": "The last name of the user"\n }\n },\n "required": [\n "first_name",\n "last_name"\n ]\n }\n}',
68
+ '{\n "name": "create_invoice",\n "description": "Create a new invoice",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "items": {\n "type": "array",\n "items": {\n "type": "string"\n },\n "description": "The list of items in the invoice"\n },\n "total_amount": {\n "type": "number",\n "description": "The total amount of the invoice"\n }\n },\n "required": [\n "customer_name",\n "items",\n "total_amount"\n ]\n }\n}',
69
+ '{\n "name": "create_invoice",\n "description": "Create an invoice",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "amount": {\n "type": "number",\n "description": "The amount of the invoice"\n },\n "due_date": {\n "type": "string",\n "description": "The due date of the invoice"\n }\n },\n "required": [\n "customer_name",\n "amount"\n ]\n }\n}',
70
+ '{\n "name": "create_invoice",\n "description": "Create an invoice with specified details",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "order_items": {\n "type": "array",\n "items": {\n "type": "object",\n "properties": {\n "item_name": {\n "type": "string",\n "description": "The name of the item"\n },\n "quantity": {\n "type": "integer",\n "description": "The quantity of the item"\n },\n "unit_price": {\n "type": "number",\n "description": "The unit price of the item"\n }\n },\n "required": [\n "item_name",\n "quantity",\n "unit_price"\n ]\n }\n }\n },\n "required": [\n "customer_name",\n "order_items"\n ]\n }\n}',
71
+ '{\n "name": "generate_random_joke",\n "description": "Generate a random joke",\n "parameters": {}\n}',
72
+ ]
73
+ )
74
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
75
+ ```
76
+
77
+ <!--
78
+ ### Direct Usage (Transformers)
79
+
80
+ <details><summary>Click to see the direct usage in Transformers</summary>
81
+
82
+ </details>
83
+ -->
84
+
85
+ <!--
86
+ ### Downstream Usage (Sentence Transformers)
87
+
88
+ You can finetune this model on your own dataset.
89
+
90
+ <details><summary>Click to expand</summary>
91
+
92
+ </details>
93
+ -->
94
+
95
+ <!--
96
+ ### Out-of-Scope Use
97
+
98
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
99
+ -->
100
+
101
+ <!--
102
+ ## Bias, Risks and Limitations
103
+
104
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
105
+ -->
106
+
107
+ <!--
108
+ ### Recommendations
109
+
110
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
111
+ -->
112
+
113
+ ## Training Details
114
+
115
+ ### Training Dataset
116
+
117
+ #### Unnamed Dataset
118
+
119
+ * Size: 1,220 training samples
120
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
121
+ * Approximate statistics based on the first 1000 samples:
122
+ | | query | docs | labels |
123
+ |:--------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
124
+ | type | string | list | list |
125
+ | details | <ul><li>min: 23 characters</li><li>mean: 113.88 characters</li><li>max: 264 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 5.80 elements</li><li>max: 9 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 5.80 elements</li><li>max: 9 elements</li></ul> |
126
+ * Samples:
127
+ | query | docs | labels |
128
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
129
+ | <code>Hi, I need a new username. My first name is John and my last name is Doe.</code> | <code>['{\n "name": "generate_username",\n "description": "Generate a unique username for a new user",\n "parameters": {\n "type": "object",\n "properties": {\n "first_name": {\n "type": "string",\n "description": "The first name of the user"\n },\n "last_name": {\n "type": "string",\n "description": "The last name of the user"\n }\n },\n "required": [\n "first_name",\n "last_name"\n ]\n }\n}', '{\n "name": "create_invoice",\n "description": "Create a new invoice",\n "parameters": {\n "type": "object",\n "properties": {\n "customer_name": {\n "type": "string",\n "description": "The name of the customer"\n },\n "items": {\n "type": "array",\n "items": {\n "type": "string"\n }...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
130
+ | <code>Hey, I'm feeling a bit bored. Can you tell me a random fact?</code> | <code>['{\n "name": "get_random_fact",\n "description": "Get a random fact",\n "parameters": {}\n}', '{\n "name": "get_news",\n "description": "Get the latest news articles",\n "parameters": {\n "type": "object",\n "properties": {\n "category": {\n "type": "string",\n "description": "The category of news articles to retrieve"\n },\n "country": {\n "type": "string",\n "description": "The country for which to retrieve news articles"\n }\n },\n "required": [\n "category",\n "country"\n ]\n }\n}', '{\n "name": "get_news_headlines",\n "description": "Get the latest news headlines",\n "parameters": {\n "type": "object",\n "properties": {\n "country": {\n "type": "string",\n "description": "The country for which news headlines are requested"\n }\...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
131
+ | <code>I need to create a poll for my team to decide our next team building activity. The options are "Bowling", "Movie Night", "Paintball", and "Cooking Class".</code> | <code>['{\n "name": "create_poll",\n "description": "Create a new poll",\n "parameters": {\n "type": "object",\n "properties": {\n "question": {\n "type": "string",\n "description": "The question of the poll"\n },\n "options": {\n "type": "array",\n "items": {\n "type": "string"\n },\n "description": "The options for the poll"\n }\n },\n "required": [\n "question",\n "options"\n ]\n }\n}', '{\n "name": "schedule_meeting",\n "description": "Schedule a meeting with specified participants",\n "parameters": {\n "type": "object",\n "properties": {\n "participants": {\n "type": "array",\n "items": {\n "type": "string"\n },\n "description": "The participants of the meet...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
132
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
133
+ ```json
134
+ {
135
+ "activation_fn": "torch.nn.modules.linear.Identity",
136
+ "mini_batch_size": 4
137
+ }
138
+ ```
139
+
140
+ ### Training Hyperparameters
141
+ #### Non-Default Hyperparameters
142
+
143
+ - `per_device_train_batch_size`: 4
144
+ - `learning_rate`: 2e-05
145
+ - `num_train_epochs`: 1
146
+ - `seed`: 12
147
+ - `bf16`: True
148
+
149
+ #### All Hyperparameters
150
+ <details><summary>Click to expand</summary>
151
+
152
+ - `overwrite_output_dir`: False
153
+ - `do_predict`: False
154
+ - `eval_strategy`: no
155
+ - `prediction_loss_only`: True
156
+ - `per_device_train_batch_size`: 4
157
+ - `per_device_eval_batch_size`: 8
158
+ - `per_gpu_train_batch_size`: None
159
+ - `per_gpu_eval_batch_size`: None
160
+ - `gradient_accumulation_steps`: 1
161
+ - `eval_accumulation_steps`: None
162
+ - `torch_empty_cache_steps`: None
163
+ - `learning_rate`: 2e-05
164
+ - `weight_decay`: 0.0
165
+ - `adam_beta1`: 0.9
166
+ - `adam_beta2`: 0.999
167
+ - `adam_epsilon`: 1e-08
168
+ - `max_grad_norm`: 1.0
169
+ - `num_train_epochs`: 1
170
+ - `max_steps`: -1
171
+ - `lr_scheduler_type`: linear
172
+ - `lr_scheduler_kwargs`: {}
173
+ - `warmup_ratio`: 0.0
174
+ - `warmup_steps`: 0
175
+ - `log_level`: passive
176
+ - `log_level_replica`: warning
177
+ - `log_on_each_node`: True
178
+ - `logging_nan_inf_filter`: True
179
+ - `save_safetensors`: True
180
+ - `save_on_each_node`: False
181
+ - `save_only_model`: False
182
+ - `restore_callback_states_from_checkpoint`: False
183
+ - `no_cuda`: False
184
+ - `use_cpu`: False
185
+ - `use_mps_device`: False
186
+ - `seed`: 12
187
+ - `data_seed`: None
188
+ - `jit_mode_eval`: False
189
+ - `use_ipex`: False
190
+ - `bf16`: True
191
+ - `fp16`: False
192
+ - `fp16_opt_level`: O1
193
+ - `half_precision_backend`: auto
194
+ - `bf16_full_eval`: False
195
+ - `fp16_full_eval`: False
196
+ - `tf32`: None
197
+ - `local_rank`: 0
198
+ - `ddp_backend`: None
199
+ - `tpu_num_cores`: None
200
+ - `tpu_metrics_debug`: False
201
+ - `debug`: []
202
+ - `dataloader_drop_last`: False
203
+ - `dataloader_num_workers`: 0
204
+ - `dataloader_prefetch_factor`: None
205
+ - `past_index`: -1
206
+ - `disable_tqdm`: False
207
+ - `remove_unused_columns`: True
208
+ - `label_names`: None
209
+ - `load_best_model_at_end`: False
210
+ - `ignore_data_skip`: False
211
+ - `fsdp`: []
212
+ - `fsdp_min_num_params`: 0
213
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
214
+ - `tp_size`: 0
215
+ - `fsdp_transformer_layer_cls_to_wrap`: None
216
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
217
+ - `deepspeed`: None
218
+ - `label_smoothing_factor`: 0.0
219
+ - `optim`: adamw_torch
220
+ - `optim_args`: None
221
+ - `adafactor`: False
222
+ - `group_by_length`: False
223
+ - `length_column_name`: length
224
+ - `ddp_find_unused_parameters`: None
225
+ - `ddp_bucket_cap_mb`: None
226
+ - `ddp_broadcast_buffers`: False
227
+ - `dataloader_pin_memory`: True
228
+ - `dataloader_persistent_workers`: False
229
+ - `skip_memory_metrics`: True
230
+ - `use_legacy_prediction_loop`: False
231
+ - `push_to_hub`: False
232
+ - `resume_from_checkpoint`: None
233
+ - `hub_model_id`: None
234
+ - `hub_strategy`: every_save
235
+ - `hub_private_repo`: None
236
+ - `hub_always_push`: False
237
+ - `gradient_checkpointing`: False
238
+ - `gradient_checkpointing_kwargs`: None
239
+ - `include_inputs_for_metrics`: False
240
+ - `include_for_metrics`: []
241
+ - `eval_do_concat_batches`: True
242
+ - `fp16_backend`: auto
243
+ - `push_to_hub_model_id`: None
244
+ - `push_to_hub_organization`: None
245
+ - `mp_parameters`:
246
+ - `auto_find_batch_size`: False
247
+ - `full_determinism`: False
248
+ - `torchdynamo`: None
249
+ - `ray_scope`: last
250
+ - `ddp_timeout`: 1800
251
+ - `torch_compile`: False
252
+ - `torch_compile_backend`: None
253
+ - `torch_compile_mode`: None
254
+ - `dispatch_batches`: None
255
+ - `split_batches`: None
256
+ - `include_tokens_per_second`: False
257
+ - `include_num_input_tokens_seen`: False
258
+ - `neftune_noise_alpha`: None
259
+ - `optim_target_modules`: None
260
+ - `batch_eval_metrics`: False
261
+ - `eval_on_start`: False
262
+ - `use_liger_kernel`: False
263
+ - `eval_use_gather_object`: False
264
+ - `average_tokens_across_devices`: False
265
+ - `prompts`: None
266
+ - `batch_sampler`: batch_sampler
267
+ - `multi_dataset_batch_sampler`: proportional
268
+
269
+ </details>
270
+
271
+ ### Training Logs
272
+ | Epoch | Step | Training Loss |
273
+ |:------:|:----:|:-------------:|
274
+ | 0.0033 | 1 | 2.4675 |
275
+ | 0.0164 | 5 | 2.1357 |
276
+ | 0.0328 | 10 | 2.1358 |
277
+ | 0.0492 | 15 | 2.1071 |
278
+ | 0.0656 | 20 | 2.1268 |
279
+ | 0.0820 | 25 | 2.1258 |
280
+ | 0.0984 | 30 | 2.1272 |
281
+ | 0.1148 | 35 | 2.1288 |
282
+ | 0.1311 | 40 | 2.1298 |
283
+ | 0.1475 | 45 | 2.125 |
284
+ | 0.1639 | 50 | 2.1249 |
285
+ | 0.1803 | 55 | 2.0922 |
286
+ | 0.1967 | 60 | 2.1357 |
287
+ | 0.2131 | 65 | 2.1275 |
288
+ | 0.2295 | 70 | 2.1204 |
289
+ | 0.2459 | 75 | 2.1348 |
290
+ | 0.2623 | 80 | 2.1246 |
291
+ | 0.2787 | 85 | 2.1251 |
292
+ | 0.2951 | 90 | 2.128 |
293
+ | 0.3115 | 95 | 2.1261 |
294
+ | 0.3279 | 100 | 2.124 |
295
+ | 0.3443 | 105 | 2.1313 |
296
+ | 0.3607 | 110 | 2.1196 |
297
+ | 0.3770 | 115 | 2.1201 |
298
+ | 0.3934 | 120 | 2.1227 |
299
+ | 0.4098 | 125 | 2.1317 |
300
+ | 0.4262 | 130 | 2.1209 |
301
+ | 0.4426 | 135 | 2.0453 |
302
+ | 0.4590 | 140 | 2.1211 |
303
+ | 0.4754 | 145 | 2.1193 |
304
+ | 0.4918 | 150 | 2.1233 |
305
+ | 0.5082 | 155 | 2.1227 |
306
+ | 0.5246 | 160 | 2.1229 |
307
+ | 0.5410 | 165 | 2.1313 |
308
+ | 0.5574 | 170 | 2.1218 |
309
+ | 0.5738 | 175 | 2.1241 |
310
+ | 0.5902 | 180 | 2.1213 |
311
+ | 0.6066 | 185 | 2.1215 |
312
+ | 0.6230 | 190 | 2.1196 |
313
+ | 0.6393 | 195 | 2.1211 |
314
+ | 0.6557 | 200 | 2.1252 |
315
+ | 0.6721 | 205 | 2.1018 |
316
+ | 0.6885 | 210 | 2.1209 |
317
+ | 0.7049 | 215 | 2.1201 |
318
+ | 0.7213 | 220 | 2.1232 |
319
+ | 0.7377 | 225 | 2.1259 |
320
+ | 0.7541 | 230 | 2.1235 |
321
+ | 0.7705 | 235 | 2.125 |
322
+ | 0.7869 | 240 | 2.1188 |
323
+ | 0.8033 | 245 | 2.1305 |
324
+ | 0.8197 | 250 | 2.1273 |
325
+ | 0.8361 | 255 | 2.1193 |
326
+ | 0.8525 | 260 | 2.1255 |
327
+ | 0.8689 | 265 | 2.0802 |
328
+ | 0.8852 | 270 | 2.1238 |
329
+ | 0.9016 | 275 | 2.125 |
330
+ | 0.9180 | 280 | 2.1268 |
331
+ | 0.9344 | 285 | 2.1237 |
332
+ | 0.9508 | 290 | 2.1189 |
333
+ | 0.9672 | 295 | 2.1244 |
334
+ | 0.9836 | 300 | 2.1131 |
335
+ | 1.0 | 305 | 2.1242 |
336
+
337
+
338
+ ### Framework Versions
339
+ - Python: 3.10.16
340
+ - Sentence Transformers: 4.0.1
341
+ - Transformers: 4.50.3
342
+ - PyTorch: 2.6.0+cu124
343
+ - Accelerate: 1.6.0
344
+ - Datasets: 3.5.0
345
+ - Tokenizers: 0.21.1
346
+
347
+ ## Citation
348
+
349
+ ### BibTeX
350
+
351
+ #### Sentence Transformers
352
+ ```bibtex
353
+ @inproceedings{reimers-2019-sentence-bert,
354
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
355
+ author = "Reimers, Nils and Gurevych, Iryna",
356
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
357
+ month = "11",
358
+ year = "2019",
359
+ publisher = "Association for Computational Linguistics",
360
+ url = "https://arxiv.org/abs/1908.10084",
361
+ }
362
+ ```
363
+
364
+ #### ListNetLoss
365
+ ```bibtex
366
+ @inproceedings{cao2007learning,
367
+ title={Learning to Rank: From Pairwise Approach to Listwise Approach},
368
+ author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
369
+ booktitle={Proceedings of the 24th international conference on Machine learning},
370
+ pages={129--136},
371
+ year={2007}
372
+ }
373
+ ```
374
+
375
+ <!--
376
+ ## Glossary
377
+
378
+ *Clearly define terms in order to be accessible across audiences.*
379
+ -->
380
+
381
+ <!--
382
+ ## Model Card Authors
383
+
384
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
385
+ -->
386
+
387
+ <!--
388
+ ## Model Card Contact
389
+
390
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
391
+ -->
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "id2label": {
23
+ "0": "LABEL_0"
24
+ },
25
+ "initializer_cutoff_factor": 2.0,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 1152,
28
+ "label2id": {
29
+ "LABEL_0": 0
30
+ },
31
+ "layer_norm_eps": 1e-05,
32
+ "local_attention": 128,
33
+ "local_rope_theta": 10000.0,
34
+ "max_position_embeddings": 8192,
35
+ "mlp_bias": false,
36
+ "mlp_dropout": 0.0,
37
+ "model_type": "modernbert",
38
+ "norm_bias": false,
39
+ "norm_eps": 1e-05,
40
+ "num_attention_heads": 12,
41
+ "num_hidden_layers": 22,
42
+ "pad_token_id": 50283,
43
+ "position_embedding_type": "absolute",
44
+ "reference_compile": true,
45
+ "repad_logits_with_grad": false,
46
+ "sentence_transformers": {
47
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
48
+ "version": "4.0.1"
49
+ },
50
+ "sep_token_id": 50282,
51
+ "sparse_pred_ignore_index": -100,
52
+ "sparse_prediction": false,
53
+ "torch_dtype": "float32",
54
+ "transformers_version": "4.50.3",
55
+ "vocab_size": 50368
56
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cac3454b71f16e866a119819428283c9441789907368cd0a3f175cc720141eb
3
+ size 598436708
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "max_length": 512,
937
+ "model_input_names": [
938
+ "input_ids",
939
+ "attention_mask"
940
+ ],
941
+ "model_max_length": 8192,
942
+ "pad_to_multiple_of": null,
943
+ "pad_token": "[PAD]",
944
+ "pad_token_type_id": 0,
945
+ "padding_side": "right",
946
+ "sep_token": "[SEP]",
947
+ "stride": 0,
948
+ "tokenizer_class": "PreTrainedTokenizer",
949
+ "truncation_side": "right",
950
+ "truncation_strategy": "longest_first",
951
+ "unk_token": "[UNK]"
952
+ }