File size: 31,244 Bytes
9bb331c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:78704
- loss:ListMLELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- microsoft/ms_marco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.4776
name: Map
- type: mrr@10
value: 0.4665
name: Mrr@10
- type: ndcg@10
value: 0.533
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3041
name: Map
- type: mrr@10
value: 0.4803
name: Mrr@10
- type: ndcg@10
value: 0.317
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.479
name: Map
- type: mrr@10
value: 0.4831
name: Mrr@10
- type: ndcg@10
value: 0.5407
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.4202
name: Map
- type: mrr@10
value: 0.4766
name: Mrr@10
- type: ndcg@10
value: 0.4636
name: Ndcg@10
---
# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("yjoonjang/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-plistmle-customweight")
# Get scores for pairs of texts
pairs = [
['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (3,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'How many calories in an egg',
[
'There are on average between 55 and 80 calories in an egg depending on its size.',
'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
'Most of the calories in an egg come from the yellow yolk in the center.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.4776 (-0.0120) | 0.3041 (+0.0431) | 0.4790 (+0.0594) |
| mrr@10 | 0.4665 (-0.0110) | 0.4803 (-0.0195) | 0.4831 (+0.0564) |
| **ndcg@10** | **0.5330 (-0.0074)** | **0.3170 (-0.0081)** | **0.5407 (+0.0401)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.4202 (+0.0302) |
| mrr@10 | 0.4766 (+0.0086) |
| **ndcg@10** | **0.4636 (+0.0082)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### ms_marco
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 78,704 training samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 10 characters</li><li>mean: 34.15 characters</li><li>max: 100 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
* Samples:
| query | docs | labels |
|:----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>is dna acidic</code> | <code>['Great question. Deoxyribonucleic Acid is made up of a sugar (the deoxyribose), a phosphate ion, and a nitrogenous base. the phosphate ion is where the acidity is, its also called phosphoric acid while in your cells.', 'Confidence votes 134. Great question. Deoxyribonucleic Acid is made up of a sugar (the deoxyribose), a phosphate ion, and a nitrogenous base. the phosphate ion is where the acidity is, its also called phosphoric acid while in your cells.', 'Yes, DNA is an acid. In the structure of DNA, there is sugar (deoxyribose), a phosphate ion, and a nitrogenous base. the phosphate ion gives the acidic property. Fri Jan 14, 2005 5:07 pm. Which is kind of funny because the nitrogen base really IS a base.', 'First of all, DNA is not made up of nucleotide bases but of nucleotides. These consist of a sugar bound to one of the 4 nucleobases Adenine, Cytosine, Guanine or Thymine (Uracil in the case of RNA) and a phosphate group.', 'As you already know, the letters in DNA stand for Deoxyr...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
| <code>what is a nerve conduction study</code> | <code>['A nerve conduction study (NCS), also called a nerve conduction velocity (NCV) test--is a measurement of the speed of conduction of an electrical impulse through a nerve. NCS can determine nerve damage and destruction. During the test, the nerve is stimulated, usually with surface electrode patches attached to the skin. The nerve conduction velocity (speed) is then calculated by measuring the distance between electrodes and the time it takes for electrical impulses to travel between electrodes. A related procedure that may be performed is electromyography (EMG).', 'Nerve conduction studies and needle EMG are commonly performed by physical medicine and rehabilitation or neurology specialists to assess the ability of the nervous system to conduct electrical impulses and to evaluate nerve/muscle function to determine if neuromuscular disease is present. Motor nerve conduction studies. In motor nerve conduction studies, motor nerves are stimulated and the compound muscle action potential ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>average nhl salary</code> | <code>['Most NHL teams, 17 of them, paid an average salary per player ranging from $1.8 million to $1 million. Only five teams--Philadelphia Flyers, Colorado Avalanche, New York Islanders, Anaheim Ducks and the Tampa Bay Lightning paid average salaries of under a million dollars per player. The minimum NHL player salary, per the collective bargaining agreement, is $500,000 in 2009-10 and 2010-11. The maximum seasonal salary for players new to the NHL is $900,000 for 2009 and 2010; and $925,000 for 2011 draftees.', 'Sports NHL NHL Salaries 2015. National Hockey League salary cap is what every team has to spend a limited amount of money on purchasing players every year. So that makes it more compatible to earn good players in all the teams and make it more balanced in strength. This led some teams to trade away well paid star players to fit the cap. But the teams were allowed to spend $70.4 Million in a year for the prorated shorted season length. The highest NHL career salary earns as of now ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
```json
{
"lambda_weight": "sentence_transformers.cross_encoder.losses.ListMLELoss.ListMLELambdaWeight",
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16,
"respect_input_order": true
}
```
### Evaluation Dataset
#### ms_marco
* Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
* Size: 1,000 evaluation samples
* Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | query | docs | labels |
|:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 12 characters</li><li>mean: 33.4 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
* Samples:
| query | docs | labels |
|:---------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
| <code>what is contamination</code> | <code>['Contamination is the presence of an unwanted constituent, contaminant or impurity in a material, physical body, natural environment, workplace, etc. Contamination may include residual radioactive material remaining at a site after the completion of decommissioning of a site where there was a nuclear reactor, such as a power plant, experimental reactor, isotope reactor or a nuclear powered ship or submarine.', 'contamination. 1. the soiling or making inferior by contact or mixture, as by introduction of infectious organisms into a wound, into water, milk, food or onto the external surface of the body or on bandages and other dressings. 2. the deposition of radioactive material in any place where it is not desired. See Cross contamination Public health The presence of any foreign or undesired material in a system–eg, toxic contamination of the ground water in an ecosystem or untreated sewage into a stream Radiation physics The deposition of radioactive material in any place where it is...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
| <code>what does crisis representation in social research mean</code> | <code>['The crisis of representation that now seems so apparent after the writing of Baudrillard was also the result of a convergence of historical conditions both inside and outside of art. As a result, art’s capacity to depict the world was effected. Digging through all of my archived materials continues to be a good distraction from being productive. I stumbled upon this diatribe… but can’t figure out if I wrote this for a class or for my own geekful bliss…. Issues surrounding representation have played a key role in the development of postmodern art.', 'CRISIS OF REPRESENTATION. This phrase was coined by George Marcus and Michael Fischer to refer specifically to the uncertainty within the human sciences about adequate means of describing social reality. This crisis arises from the (noncontroversial) claim that no interpretive account can ever directly or completely capture lived experience. Broadly conceived, the crisis is part of a more general set of ideas across the human sciences tha...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
| <code>what was moche</code> | <code>['The Moche civilization (alternatively, the Mochica culture, Early Chimu, Pre-Chimu, Proto-Chimu, etc.) flourished in northern Peru with its capital near present-day Moche and Trujillo, from about 100 AD to 800 AD, during the Regional Development Epoch.', 'Moche Politics and Economy. The Moche were a stratified society with a powerful elite and an elaborate, well-codified ritual process. The political economy was based on the presence of large civic-ceremonial centers that produced a wide range of goods which were marketed to rural agrarian villages.', 'The Moche civilization (also known as the Mochica) flourished along the northern coast and valleys of ancient Peru, in particular, in the Chicama and Trujillo Valleys, between 1 CE and 800 CE.', 'While Mochica has been used in place of Moche by people describing this culture, the word Mochica actually refers to a particular dialect. This dialect, however, was not proven to be the dialect of the Moche Civilization and culture.', 'Moche ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
* Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
```json
{
"lambda_weight": "sentence_transformers.cross_encoder.losses.ListMLELoss.ListMLELambdaWeight",
"activation_fct": "torch.nn.modules.linear.Identity",
"mini_batch_size": 16,
"respect_input_order": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.0284 (-0.5121) | 0.2663 (-0.0587) | 0.0359 (-0.4647) | 0.1102 (-0.3452) |
| 0.0002 | 1 | 11.2052 | - | - | - | - | - |
| 0.0508 | 250 | 10.1581 | - | - | - | - | - |
| 0.1016 | 500 | 9.1585 | 9.0436 | 0.0470 (-0.4934) | 0.3321 (+0.0071) | 0.0242 (-0.4764) | 0.1344 (-0.3209) |
| 0.1525 | 750 | 9.0556 | - | - | - | - | - |
| 0.2033 | 1000 | 8.9995 | 8.9401 | 0.2576 (-0.2828) | 0.2456 (-0.0795) | 0.3359 (-0.1648) | 0.2797 (-0.1757) |
| 0.2541 | 1250 | 8.9878 | - | - | - | - | - |
| 0.3049 | 1500 | 8.9811 | 8.8985 | 0.4518 (-0.0886) | 0.2943 (-0.0307) | 0.3790 (-0.1217) | 0.3750 (-0.0803) |
| 0.3558 | 1750 | 8.9185 | - | - | - | - | - |
| 0.4066 | 2000 | 8.863 | 8.9124 | 0.4213 (-0.1191) | 0.2972 (-0.0278) | 0.4477 (-0.0530) | 0.3887 (-0.0667) |
| 0.4574 | 2250 | 8.8962 | - | - | - | - | - |
| 0.5082 | 2500 | 8.9063 | 8.8869 | 0.5117 (-0.0287) | 0.3135 (-0.0116) | 0.5208 (+0.0202) | 0.4487 (-0.0067) |
| 0.5591 | 2750 | 8.9379 | - | - | - | - | - |
| 0.6099 | 3000 | 8.869 | 8.8610 | 0.5208 (-0.0196) | 0.3203 (-0.0048) | 0.4566 (-0.0440) | 0.4326 (-0.0228) |
| 0.6607 | 3250 | 8.8965 | - | - | - | - | - |
| 0.7115 | 3500 | 8.8487 | 8.8466 | 0.5024 (-0.0380) | 0.3007 (-0.0243) | 0.4827 (-0.0179) | 0.4286 (-0.0267) |
| 0.7624 | 3750 | 8.8695 | - | - | - | - | - |
| 0.8132 | 4000 | 8.8732 | 8.8497 | 0.5207 (-0.0197) | 0.3247 (-0.0003) | 0.5292 (+0.0285) | 0.4582 (+0.0028) |
| 0.8640 | 4250 | 8.9325 | - | - | - | - | - |
| **0.9148** | **4500** | **8.8244** | **8.8205** | **0.5330 (-0.0074)** | **0.3170 (-0.0081)** | **0.5407 (+0.0401)** | **0.4636 (+0.0082)** |
| 0.9656 | 4750 | 8.858 | - | - | - | - | - |
| -1 | -1 | - | - | 0.5330 (-0.0074) | 0.3170 (-0.0081) | 0.5407 (+0.0401) | 0.4636 (+0.0082) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ListMLELoss
```bibtex
@inproceedings{lan2013position,
title={Position-aware ListMLE: a sequential learning process for ranking},
author={Lan, Yanyan and Guo, Jiafeng and Cheng, Xueqi and Liu, Tie-Yan},
booktitle={Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence},
pages={333--342},
year={2013}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |