Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- fr
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
license: mit
|
7 |
+
datasets:
|
8 |
+
- oscar
|
9 |
+
widget:
|
10 |
+
- text: "Je suis ravi de vous "
|
11 |
+
---
|
12 |
+
|
13 |
+
# GPT-2 finetuned on French Dataset
|
14 |
+
|
15 |
+
### Tokenizer
|
16 |
+
We use GPT-2 tokenizer.
|
17 |
+
|
18 |
+
### Model
|
19 |
+
We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_fr` French data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed
|
20 |
+
```
|
21 |
+
- preprocessing_num_workers: 8
|
22 |
+
- per_device_train_batch_size: 2
|
23 |
+
- gradient_accumulation_steps: 4
|
24 |
+
- per_device_eval_batch_size: 2
|
25 |
+
- eval_accumulation_steps: 4
|
26 |
+
- eval_steps: 1000
|
27 |
+
- evaluation_strategy: "steps"
|
28 |
+
- max_eval_samples: 5000
|
29 |
+
```
|
30 |
+
|
31 |
+
**Final checkpoint**: checkpoint-76500
|