File size: 24,077 Bytes
20ab96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
---
language:
- en
license: mit
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:496123
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: prajjwal1/bert-medium
widget:
- text: What is the name, background and ethnicity of the actress who plays Raj’s
    sister Priya on “The Big Bang Theory”? —Charles Dix, Stewartsville, Mo. Aarti
    Mann, 36, a first-generation Indian American, was born in Connecticut and raised
    in Pennsylvania, and plays Priya Koothrappali on “The Big Bang Theory.”. Of landing
    the role as Raj’s sister, she says, “It is like winning the opportunity to go
    to the acting Olympics.
- text: 'Resolved Question: Severe pain in right side of hip radiating down leg and
    into foot. It hurts to stand, walk, sit or lie down. I''ve had it for several
    weeks & have used heat, ice, muscle rub-ons & patches.'
- text: 'The Antarctic Treaty. The 12 nations listed in the preamble (below) signed
    the Antarctic Treaty on 1 December 1959 at Washington, D.C. The Treaty entered
    into force on 23 June 1961; the 12 signatories became the original 12 consultative
    nations.nother 21 nations have acceded to the Antarctic Treaty: Austria, Belarus,
    Canada, Colombia, Cuba, Democratic Peoples Republic of Korea, Denmark, Estonia,
    Greece, Guatemala, Hungary, Malaysia, Monaco, Pakistan, Papua New Guinea, Portugal,
    Romania, Slovak Republic, Switzerland, Turkey, and Venezuela.'
- text: Orlando, Florida, USA  Sunrise, Sunset, and Daylength, May 2017. May 2017
     Sun in Orlando.
- text: Line baking dish ... to also cover roast). Place roast ... the roast. Place
    in preheated 300 degree oven for 2 1/2 to 3 hours. About 50 minutes per pound.rim
    all excess fat from roast. Place potatoes ... Crockery Pot on top of potatoes
    and onions. Cover and cook on low setting for 10 to 12 hours (high 5 to 6).
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE-BERT-Medium
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: dot_accuracy@1
      value: 0.4716
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7802
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8684
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9396
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4716
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.26713333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18059999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09851999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.4563333333333333
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7666333333333334
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8592166666666667
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9338666666666667
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7088774640922301
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6397524603174632
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6359976077086615
      name: Dot Map@100
    - type: query_active_dims
      value: 23.28499984741211
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9992371076650478
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 175.6306999586799
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9942457669891004
      name: Corpus Sparsity Ratio
---

# SPLADE-BERT-Medium

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [prajjwal1/bert-medium](https://huggingface.co/prajjwal1/bert-medium) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [prajjwal1/bert-medium](https://huggingface.co/prajjwal1/bert-medium) <!-- at revision ce27ec2944bd32b66ed837edb9c77eb7301b8ecc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** mit

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("yosefw/SPLADE-BERT-Medium-BS384")
# Run inference
queries = [
    "how long to bake arm roast",
]
documents = [
    'Line baking dish ... to also cover roast). Place roast ... the roast. Place in preheated 300 degree oven for 2 1/2 to 3 hours. About 50 minutes per pound.rim all excess fat from roast. Place potatoes ... Crockery Pot on top of potatoes and onions. Cover and cook on low setting for 10 to 12 hours (high 5 to 6).',
    'Considerations. The total time it takes to cook an arm roast depends on its size. A 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low.Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid.Most importantly, resist the temptation to lift the lid while your roast is cooking. 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low. Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid. Most importantly, resist the temptation to lift the lid while your roast is cooking.',
    'Set your Crock Pot on high to reach a simmer point of 209 degrees F in 3 to 4 hours, or low to reach the same cooking temperature in 7 to 8 hours. The total time it takes to cook an arm roast depends on its size. A 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low.Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid.Most importantly, resist the temptation to lift the lid while your roast is cooking. 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low. Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid. Most importantly, resist the temptation to lift the lid while your roast is cooking.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[16.1861, 15.3382, 15.6794]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.4716     |
| dot_accuracy@3        | 0.7802     |
| dot_accuracy@5        | 0.8684     |
| dot_accuracy@10       | 0.9396     |
| dot_precision@1       | 0.4716     |
| dot_precision@3       | 0.2671     |
| dot_precision@5       | 0.1806     |
| dot_precision@10      | 0.0985     |
| dot_recall@1          | 0.4563     |
| dot_recall@3          | 0.7666     |
| dot_recall@5          | 0.8592     |
| dot_recall@10         | 0.9339     |
| **dot_ndcg@10**       | **0.7089** |
| dot_mrr@10            | 0.6398     |
| dot_map@100           | 0.636      |
| query_active_dims     | 23.285     |
| query_sparsity_ratio  | 0.9992     |
| corpus_active_dims    | 175.6307   |
| corpus_sparsity_ratio | 0.9942     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 496,123 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative_1                                                                          | negative_2                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.87 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 81.23 tokens</li><li>max: 259 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 79.21 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 77.89 tokens</li><li>max: 207 tokens</li></ul> |
* Samples:
  | query                                                 | positive                                                                                                                                                                                                                                                                           | negative_1                                                                                                                                                                                                                                                                                                                                               | negative_2                                                                                                                                                                                                                                                                                                                                          |
  |:------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>heart specialists in ridgeland ms</code>        | <code>Dr. George Reynolds Jr, MD is a cardiology specialist in Ridgeland, MS and has been practicing for 35 years. He graduated from Vanderbilt University School Of Medicine in 1977 and specializes in cardiology and internal medicine.</code>                                  | <code>Dr. James Kramer is a Internist in Ridgeland, MS. Find Dr. Kramer's phone number, address and more.</code>                                                                                                                                                                                                                                         | <code>Dr. James Kramer is an internist in Ridgeland, Mississippi. He received his medical degree from Loma Linda University School of Medicine and has been in practice for more than 20 years. Dr. James Kramer's Details</code>                                                                                                                   |
  | <code>does baytril otic require a prescription</code> | <code>Baytril Otic Ear Drops-Enrofloxacin/Silver Sulfadiazine-Prices & Information. A prescription is required for this item. A prescription is required for this item. Brand medication is not available at this time.</code>                                                     | <code>RX required for this item. Click here for our full Prescription Policy and Form. Baytril Otic (enrofloxacin/silver sulfadiazine) Emulsion from Bayer is the first fluoroquinolone approved by the Food and Drug Administration for the topical treatment of canine otitis externa.</code>                                                          | <code>Product Details. Baytril Otic is a highly effective treatment prescribed by many veterinarians when your pet has an ear infection caused by susceptible bacteria or fungus. Baytril Otic is: a liquid emulsion that is used topically directly in the ear or on the skin in order to treat susceptible bacterial and yeast infections.</code> |
  | <code>what is on a gyro</code>                        | <code>Report Abuse. Gyros or gyro (giros) (pronounced /ˈjɪəroʊ/ or /ˈdʒaɪroʊ/, Greek: γύρος turn) is a Greek dish consisting of meat (typically lamb and/or beef), tomato, onion, and tzatziki sauce, and is served with pita bread. Chicken and pork meat can be used too.</code> | <code>A gyroscope (from Ancient Greek γῦρος gûros, circle and σκοπέω skopéō, to look) is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.</code> | <code>Diagram of a gyro wheel. Reaction arrows about the output axis (blue) correspond to forces applied about the input axis (green), and vice versa. A gyroscope is a wheel mounted in two or three gimbals, which are a pivoted supports that allow the rotation of the wheel about a single axis.</code>                                        |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
      "document_regularizer_weight": 0.003,
      "query_regularizer_weight": 0.005
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `gradient_accumulation_steps`: 8
- `learning_rate`: 8e-05
- `num_train_epochs`: 8
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.025
- `fp16`: True
- `load_best_model_at_end`: True
- `push_to_hub`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.025
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch | Step | Training Loss | dot_ndcg@10 |
|:-----:|:----:|:-------------:|:-----------:|
| 1.0   | 1292 | 42.0325       | 0.7155      |
| 2.0   | 2584 | 1.1261        | 0.7216      |
| 3.0   | 3876 | 1.049         | 0.7214      |
| 4.0   | 5168 | 0.9631        | 0.7188      |
| 5.0   | 6460 | 0.8725        | 0.7120      |
| -1    | -1   | -             | 0.7089      |


### Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.4
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->