File size: 24,077 Bytes
20ab96e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
---
language:
- en
license: mit
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:496123
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: prajjwal1/bert-medium
widget:
- text: What is the name, background and ethnicity of the actress who plays Raj’s
sister Priya on “The Big Bang Theory”? —Charles Dix, Stewartsville, Mo. Aarti
Mann, 36, a first-generation Indian American, was born in Connecticut and raised
in Pennsylvania, and plays Priya Koothrappali on “The Big Bang Theory.”. Of landing
the role as Raj’s sister, she says, “It is like winning the opportunity to go
to the acting Olympics.
- text: 'Resolved Question: Severe pain in right side of hip radiating down leg and
into foot. It hurts to stand, walk, sit or lie down. I''ve had it for several
weeks & have used heat, ice, muscle rub-ons & patches.'
- text: 'The Antarctic Treaty. The 12 nations listed in the preamble (below) signed
the Antarctic Treaty on 1 December 1959 at Washington, D.C. The Treaty entered
into force on 23 June 1961; the 12 signatories became the original 12 consultative
nations.nother 21 nations have acceded to the Antarctic Treaty: Austria, Belarus,
Canada, Colombia, Cuba, Democratic Peoples Republic of Korea, Denmark, Estonia,
Greece, Guatemala, Hungary, Malaysia, Monaco, Pakistan, Papua New Guinea, Portugal,
Romania, Slovak Republic, Switzerland, Turkey, and Venezuela.'
- text: Orlando, Florida, USA — Sunrise, Sunset, and Daylength, May 2017. May 2017
— Sun in Orlando.
- text: Line baking dish ... to also cover roast). Place roast ... the roast. Place
in preheated 300 degree oven for 2 1/2 to 3 hours. About 50 minutes per pound.rim
all excess fat from roast. Place potatoes ... Crockery Pot on top of potatoes
and onions. Cover and cook on low setting for 10 to 12 hours (high 5 to 6).
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE-BERT-Medium
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: dot_accuracy@1
value: 0.4716
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7802
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8684
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9396
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4716
name: Dot Precision@1
- type: dot_precision@3
value: 0.26713333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.18059999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09851999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.4563333333333333
name: Dot Recall@1
- type: dot_recall@3
value: 0.7666333333333334
name: Dot Recall@3
- type: dot_recall@5
value: 0.8592166666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.9338666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7088774640922301
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6397524603174632
name: Dot Mrr@10
- type: dot_map@100
value: 0.6359976077086615
name: Dot Map@100
- type: query_active_dims
value: 23.28499984741211
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9992371076650478
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 175.6306999586799
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9942457669891004
name: Corpus Sparsity Ratio
---
# SPLADE-BERT-Medium
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [prajjwal1/bert-medium](https://huggingface.co/prajjwal1/bert-medium) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [prajjwal1/bert-medium](https://huggingface.co/prajjwal1/bert-medium) <!-- at revision ce27ec2944bd32b66ed837edb9c77eb7301b8ecc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** mit
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("yosefw/SPLADE-BERT-Medium-BS384")
# Run inference
queries = [
"how long to bake arm roast",
]
documents = [
'Line baking dish ... to also cover roast). Place roast ... the roast. Place in preheated 300 degree oven for 2 1/2 to 3 hours. About 50 minutes per pound.rim all excess fat from roast. Place potatoes ... Crockery Pot on top of potatoes and onions. Cover and cook on low setting for 10 to 12 hours (high 5 to 6).',
'Considerations. The total time it takes to cook an arm roast depends on its size. A 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low.Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid.Most importantly, resist the temptation to lift the lid while your roast is cooking. 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low. Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid. Most importantly, resist the temptation to lift the lid while your roast is cooking.',
'Set your Crock Pot on high to reach a simmer point of 209 degrees F in 3 to 4 hours, or low to reach the same cooking temperature in 7 to 8 hours. The total time it takes to cook an arm roast depends on its size. A 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low.Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid.Most importantly, resist the temptation to lift the lid while your roast is cooking. 3- to 4-lb. chuck roast takes 5 to 6 hours on high and 10 to 12 hours on low. Chuck roasts usually contain enough marbled fat to cook without water, but most Crock-Pot roast recipes call for a little liquid. Most importantly, resist the temptation to lift the lid while your roast is cooking.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[16.1861, 15.3382, 15.6794]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.4716 |
| dot_accuracy@3 | 0.7802 |
| dot_accuracy@5 | 0.8684 |
| dot_accuracy@10 | 0.9396 |
| dot_precision@1 | 0.4716 |
| dot_precision@3 | 0.2671 |
| dot_precision@5 | 0.1806 |
| dot_precision@10 | 0.0985 |
| dot_recall@1 | 0.4563 |
| dot_recall@3 | 0.7666 |
| dot_recall@5 | 0.8592 |
| dot_recall@10 | 0.9339 |
| **dot_ndcg@10** | **0.7089** |
| dot_mrr@10 | 0.6398 |
| dot_map@100 | 0.636 |
| query_active_dims | 23.285 |
| query_sparsity_ratio | 0.9992 |
| corpus_active_dims | 175.6307 |
| corpus_sparsity_ratio | 0.9942 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 496,123 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative_1 | negative_2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.87 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 81.23 tokens</li><li>max: 259 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 79.21 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 77.89 tokens</li><li>max: 207 tokens</li></ul> |
* Samples:
| query | positive | negative_1 | negative_2 |
|:------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>heart specialists in ridgeland ms</code> | <code>Dr. George Reynolds Jr, MD is a cardiology specialist in Ridgeland, MS and has been practicing for 35 years. He graduated from Vanderbilt University School Of Medicine in 1977 and specializes in cardiology and internal medicine.</code> | <code>Dr. James Kramer is a Internist in Ridgeland, MS. Find Dr. Kramer's phone number, address and more.</code> | <code>Dr. James Kramer is an internist in Ridgeland, Mississippi. He received his medical degree from Loma Linda University School of Medicine and has been in practice for more than 20 years. Dr. James Kramer's Details</code> |
| <code>does baytril otic require a prescription</code> | <code>Baytril Otic Ear Drops-Enrofloxacin/Silver Sulfadiazine-Prices & Information. A prescription is required for this item. A prescription is required for this item. Brand medication is not available at this time.</code> | <code>RX required for this item. Click here for our full Prescription Policy and Form. Baytril Otic (enrofloxacin/silver sulfadiazine) Emulsion from Bayer is the first fluoroquinolone approved by the Food and Drug Administration for the topical treatment of canine otitis externa.</code> | <code>Product Details. Baytril Otic is a highly effective treatment prescribed by many veterinarians when your pet has an ear infection caused by susceptible bacteria or fungus. Baytril Otic is: a liquid emulsion that is used topically directly in the ear or on the skin in order to treat susceptible bacterial and yeast infections.</code> |
| <code>what is on a gyro</code> | <code>Report Abuse. Gyros or gyro (giros) (pronounced /ˈjɪəroʊ/ or /ˈdʒaɪroʊ/, Greek: γύρος turn) is a Greek dish consisting of meat (typically lamb and/or beef), tomato, onion, and tzatziki sauce, and is served with pita bread. Chicken and pork meat can be used too.</code> | <code>A gyroscope (from Ancient Greek γῦρος gûros, circle and σκοπέω skopéō, to look) is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.</code> | <code>Diagram of a gyro wheel. Reaction arrows about the output axis (blue) correspond to forces applied about the input axis (green), and vice versa. A gyroscope is a wheel mounted in two or three gimbals, which are a pivoted supports that allow the rotation of the wheel about a single axis.</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
"document_regularizer_weight": 0.003,
"query_regularizer_weight": 0.005
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `gradient_accumulation_steps`: 8
- `learning_rate`: 8e-05
- `num_train_epochs`: 8
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.025
- `fp16`: True
- `load_best_model_at_end`: True
- `push_to_hub`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 48
- `per_device_eval_batch_size`: 48
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.025
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | dot_ndcg@10 |
|:-----:|:----:|:-------------:|:-----------:|
| 1.0 | 1292 | 42.0325 | 0.7155 |
| 2.0 | 2584 | 1.1261 | 0.7216 |
| 3.0 | 3876 | 1.049 | 0.7214 |
| 4.0 | 5168 | 0.9631 | 0.7188 |
| 5.0 | 6460 | 0.8725 | 0.7120 |
| -1 | -1 | - | 0.7089 |
### Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.4
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
```
#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### FlopsLoss
```bibtex
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |