--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-Questions-goodareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current results: [] --- # roberta-Questions-goodareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3192 - Accuracy: 0.7805 - Precision: 0.6813 - Recall: 0.8185 - F1: 0.7436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.0384066791847988e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5249 | 1.0 | 165 | 0.2628 | 0.6110 | 0.0 | 0.0 | 0.0 | | 0.4371 | 2.0 | 330 | 0.3133 | 0.7843 | 0.6517 | 0.9571 | 0.7754 | | 0.3969 | 3.0 | 495 | 0.2745 | 0.6226 | 0.6364 | 0.0693 | 0.125 | | 0.3765 | 4.0 | 660 | 0.3192 | 0.7805 | 0.6813 | 0.8185 | 0.7436 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0