Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +945 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: sentence-transformers
|
6 |
+
license: apache-2.0
|
7 |
+
pipeline_tag: sentence-similarity
|
8 |
+
tags:
|
9 |
+
- sentence-transformers
|
10 |
+
- sentence-similarity
|
11 |
+
- feature-extraction
|
12 |
+
- generated_from_trainer
|
13 |
+
- dataset_size:7747936
|
14 |
+
- loss:CoSENTLoss
|
15 |
+
widget:
|
16 |
+
- source_sentence: mango cake cream cake sponge cake gateau mango gateau cream gateau
|
17 |
+
mango sponge cake cream sponge cake mango cream cake mango cream sponge cake mango
|
18 |
+
flavored sponge cake layers cream filling decorated with fresh mango slices topped
|
19 |
+
with whipped cream serves 10 people mango cream cake sponge cake gateau mango
|
20 |
+
gateau with cream filling whipped cream mango cake mango cream sponge cake for
|
21 |
+
10 people
|
22 |
+
sentences:
|
23 |
+
- vegan dessert
|
24 |
+
- oxidized ring
|
25 |
+
- cola lip gloss
|
26 |
+
- source_sentence: double breasted blouse
|
27 |
+
sentences:
|
28 |
+
- brushed jersey sweatshirt
|
29 |
+
- comfort facial tissues
|
30 |
+
- round neck sweatshirt
|
31 |
+
- source_sentence: casual shirt
|
32 |
+
sentences:
|
33 |
+
- adjustable string top
|
34 |
+
- foldable spare backpack
|
35 |
+
- spring blossom scent shower gel
|
36 |
+
- source_sentence: sweet chilli mozzarella stick
|
37 |
+
sentences:
|
38 |
+
- fragrance free facial cream
|
39 |
+
- outdoor basket
|
40 |
+
- cobb dressing salad
|
41 |
+
- source_sentence: appetizer onion ring
|
42 |
+
sentences:
|
43 |
+
- high quality sports bra
|
44 |
+
- swimmer burkini
|
45 |
+
- nuttella pizza
|
46 |
+
---
|
47 |
+
|
48 |
+
# all-MiniLM-L6-v10-pair_score
|
49 |
+
|
50 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
51 |
+
|
52 |
+
## Model Details
|
53 |
+
|
54 |
+
### Model Description
|
55 |
+
- **Model Type:** Sentence Transformer
|
56 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
57 |
+
- **Maximum Sequence Length:** 256 tokens
|
58 |
+
- **Output Dimensionality:** 384 tokens
|
59 |
+
- **Similarity Function:** Cosine Similarity
|
60 |
+
<!-- - **Training Dataset:** Unknown -->
|
61 |
+
- **Language:** en
|
62 |
+
- **License:** apache-2.0
|
63 |
+
|
64 |
+
### Model Sources
|
65 |
+
|
66 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
67 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
68 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
69 |
+
|
70 |
+
### Full Model Architecture
|
71 |
+
|
72 |
+
```
|
73 |
+
SentenceTransformer(
|
74 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
75 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
76 |
+
(2): Normalize()
|
77 |
+
)
|
78 |
+
```
|
79 |
+
|
80 |
+
## Usage
|
81 |
+
|
82 |
+
### Direct Usage (Sentence Transformers)
|
83 |
+
|
84 |
+
First install the Sentence Transformers library:
|
85 |
+
|
86 |
+
```bash
|
87 |
+
pip install -U sentence-transformers
|
88 |
+
```
|
89 |
+
|
90 |
+
Then you can load this model and run inference.
|
91 |
+
```python
|
92 |
+
from sentence_transformers import SentenceTransformer
|
93 |
+
|
94 |
+
# Download from the 🤗 Hub
|
95 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
96 |
+
# Run inference
|
97 |
+
sentences = [
|
98 |
+
'appetizer onion ring',
|
99 |
+
'nuttella pizza',
|
100 |
+
'high quality sports bra',
|
101 |
+
]
|
102 |
+
embeddings = model.encode(sentences)
|
103 |
+
print(embeddings.shape)
|
104 |
+
# [3, 384]
|
105 |
+
|
106 |
+
# Get the similarity scores for the embeddings
|
107 |
+
similarities = model.similarity(embeddings, embeddings)
|
108 |
+
print(similarities.shape)
|
109 |
+
# [3, 3]
|
110 |
+
```
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Direct Usage (Transformers)
|
114 |
+
|
115 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
116 |
+
|
117 |
+
</details>
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Downstream Usage (Sentence Transformers)
|
122 |
+
|
123 |
+
You can finetune this model on your own dataset.
|
124 |
+
|
125 |
+
<details><summary>Click to expand</summary>
|
126 |
+
|
127 |
+
</details>
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Out-of-Scope Use
|
132 |
+
|
133 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
## Bias, Risks and Limitations
|
138 |
+
|
139 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
140 |
+
-->
|
141 |
+
|
142 |
+
<!--
|
143 |
+
### Recommendations
|
144 |
+
|
145 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
146 |
+
-->
|
147 |
+
|
148 |
+
## Training Details
|
149 |
+
|
150 |
+
### Training Hyperparameters
|
151 |
+
#### Non-Default Hyperparameters
|
152 |
+
|
153 |
+
- `eval_strategy`: steps
|
154 |
+
- `per_device_train_batch_size`: 128
|
155 |
+
- `per_device_eval_batch_size`: 128
|
156 |
+
- `learning_rate`: 2e-05
|
157 |
+
- `num_train_epochs`: 1
|
158 |
+
- `warmup_ratio`: 0.1
|
159 |
+
- `fp16`: True
|
160 |
+
|
161 |
+
#### All Hyperparameters
|
162 |
+
<details><summary>Click to expand</summary>
|
163 |
+
|
164 |
+
- `overwrite_output_dir`: False
|
165 |
+
- `do_predict`: False
|
166 |
+
- `eval_strategy`: steps
|
167 |
+
- `prediction_loss_only`: True
|
168 |
+
- `per_device_train_batch_size`: 128
|
169 |
+
- `per_device_eval_batch_size`: 128
|
170 |
+
- `per_gpu_train_batch_size`: None
|
171 |
+
- `per_gpu_eval_batch_size`: None
|
172 |
+
- `gradient_accumulation_steps`: 1
|
173 |
+
- `eval_accumulation_steps`: None
|
174 |
+
- `torch_empty_cache_steps`: None
|
175 |
+
- `learning_rate`: 2e-05
|
176 |
+
- `weight_decay`: 0.0
|
177 |
+
- `adam_beta1`: 0.9
|
178 |
+
- `adam_beta2`: 0.999
|
179 |
+
- `adam_epsilon`: 1e-08
|
180 |
+
- `max_grad_norm`: 1.0
|
181 |
+
- `num_train_epochs`: 1
|
182 |
+
- `max_steps`: -1
|
183 |
+
- `lr_scheduler_type`: linear
|
184 |
+
- `lr_scheduler_kwargs`: {}
|
185 |
+
- `warmup_ratio`: 0.1
|
186 |
+
- `warmup_steps`: 0
|
187 |
+
- `log_level`: passive
|
188 |
+
- `log_level_replica`: warning
|
189 |
+
- `log_on_each_node`: True
|
190 |
+
- `logging_nan_inf_filter`: True
|
191 |
+
- `save_safetensors`: True
|
192 |
+
- `save_on_each_node`: False
|
193 |
+
- `save_only_model`: False
|
194 |
+
- `restore_callback_states_from_checkpoint`: False
|
195 |
+
- `no_cuda`: False
|
196 |
+
- `use_cpu`: False
|
197 |
+
- `use_mps_device`: False
|
198 |
+
- `seed`: 42
|
199 |
+
- `data_seed`: None
|
200 |
+
- `jit_mode_eval`: False
|
201 |
+
- `use_ipex`: False
|
202 |
+
- `bf16`: False
|
203 |
+
- `fp16`: True
|
204 |
+
- `fp16_opt_level`: O1
|
205 |
+
- `half_precision_backend`: auto
|
206 |
+
- `bf16_full_eval`: False
|
207 |
+
- `fp16_full_eval`: False
|
208 |
+
- `tf32`: None
|
209 |
+
- `local_rank`: 0
|
210 |
+
- `ddp_backend`: None
|
211 |
+
- `tpu_num_cores`: None
|
212 |
+
- `tpu_metrics_debug`: False
|
213 |
+
- `debug`: []
|
214 |
+
- `dataloader_drop_last`: False
|
215 |
+
- `dataloader_num_workers`: 0
|
216 |
+
- `dataloader_prefetch_factor`: None
|
217 |
+
- `past_index`: -1
|
218 |
+
- `disable_tqdm`: False
|
219 |
+
- `remove_unused_columns`: True
|
220 |
+
- `label_names`: None
|
221 |
+
- `load_best_model_at_end`: False
|
222 |
+
- `ignore_data_skip`: False
|
223 |
+
- `fsdp`: []
|
224 |
+
- `fsdp_min_num_params`: 0
|
225 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
226 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
227 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
228 |
+
- `deepspeed`: None
|
229 |
+
- `label_smoothing_factor`: 0.0
|
230 |
+
- `optim`: adamw_torch
|
231 |
+
- `optim_args`: None
|
232 |
+
- `adafactor`: False
|
233 |
+
- `group_by_length`: False
|
234 |
+
- `length_column_name`: length
|
235 |
+
- `ddp_find_unused_parameters`: None
|
236 |
+
- `ddp_bucket_cap_mb`: None
|
237 |
+
- `ddp_broadcast_buffers`: False
|
238 |
+
- `dataloader_pin_memory`: True
|
239 |
+
- `dataloader_persistent_workers`: False
|
240 |
+
- `skip_memory_metrics`: True
|
241 |
+
- `use_legacy_prediction_loop`: False
|
242 |
+
- `push_to_hub`: False
|
243 |
+
- `resume_from_checkpoint`: None
|
244 |
+
- `hub_model_id`: None
|
245 |
+
- `hub_strategy`: every_save
|
246 |
+
- `hub_private_repo`: False
|
247 |
+
- `hub_always_push`: False
|
248 |
+
- `gradient_checkpointing`: False
|
249 |
+
- `gradient_checkpointing_kwargs`: None
|
250 |
+
- `include_inputs_for_metrics`: False
|
251 |
+
- `eval_do_concat_batches`: True
|
252 |
+
- `fp16_backend`: auto
|
253 |
+
- `push_to_hub_model_id`: None
|
254 |
+
- `push_to_hub_organization`: None
|
255 |
+
- `mp_parameters`:
|
256 |
+
- `auto_find_batch_size`: False
|
257 |
+
- `full_determinism`: False
|
258 |
+
- `torchdynamo`: None
|
259 |
+
- `ray_scope`: last
|
260 |
+
- `ddp_timeout`: 1800
|
261 |
+
- `torch_compile`: False
|
262 |
+
- `torch_compile_backend`: None
|
263 |
+
- `torch_compile_mode`: None
|
264 |
+
- `dispatch_batches`: None
|
265 |
+
- `split_batches`: None
|
266 |
+
- `include_tokens_per_second`: False
|
267 |
+
- `include_num_input_tokens_seen`: False
|
268 |
+
- `neftune_noise_alpha`: None
|
269 |
+
- `optim_target_modules`: None
|
270 |
+
- `batch_eval_metrics`: False
|
271 |
+
- `eval_on_start`: False
|
272 |
+
- `use_liger_kernel`: False
|
273 |
+
- `eval_use_gather_object`: False
|
274 |
+
- `batch_sampler`: batch_sampler
|
275 |
+
- `multi_dataset_batch_sampler`: proportional
|
276 |
+
|
277 |
+
</details>
|
278 |
+
|
279 |
+
### Training Logs
|
280 |
+
<details><summary>Click to expand</summary>
|
281 |
+
|
282 |
+
| Epoch | Step | Training Loss |
|
283 |
+
|:------:|:-----:|:-------------:|
|
284 |
+
| 0.0017 | 100 | 13.3171 |
|
285 |
+
| 0.0033 | 200 | 12.9799 |
|
286 |
+
| 0.0050 | 300 | 12.5133 |
|
287 |
+
| 0.0066 | 400 | 11.9388 |
|
288 |
+
| 0.0083 | 500 | 11.0616 |
|
289 |
+
| 0.0099 | 600 | 10.2712 |
|
290 |
+
| 0.0116 | 700 | 9.5253 |
|
291 |
+
| 0.0132 | 800 | 8.7706 |
|
292 |
+
| 0.0149 | 900 | 8.4333 |
|
293 |
+
| 0.0165 | 1000 | 8.0902 |
|
294 |
+
| 0.0182 | 1100 | 7.8862 |
|
295 |
+
| 0.0198 | 1200 | 7.7362 |
|
296 |
+
| 0.0215 | 1300 | 7.6007 |
|
297 |
+
| 0.0231 | 1400 | 7.5304 |
|
298 |
+
| 0.0248 | 1500 | 7.4249 |
|
299 |
+
| 0.0264 | 1600 | 7.3035 |
|
300 |
+
| 0.0281 | 1700 | 7.2026 |
|
301 |
+
| 0.0297 | 1800 | 7.1572 |
|
302 |
+
| 0.0314 | 1900 | 7.0523 |
|
303 |
+
| 0.0330 | 2000 | 7.1158 |
|
304 |
+
| 0.0347 | 2100 | 6.9856 |
|
305 |
+
| 0.0363 | 2200 | 7.0865 |
|
306 |
+
| 0.0380 | 2300 | 6.9496 |
|
307 |
+
| 0.0396 | 2400 | 6.9294 |
|
308 |
+
| 0.0413 | 2500 | 6.8825 |
|
309 |
+
| 0.0430 | 2600 | 6.8218 |
|
310 |
+
| 0.0446 | 2700 | 6.8416 |
|
311 |
+
| 0.0463 | 2800 | 6.7184 |
|
312 |
+
| 0.0479 | 2900 | 6.9183 |
|
313 |
+
| 0.0496 | 3000 | 6.7166 |
|
314 |
+
| 0.0512 | 3100 | 6.6821 |
|
315 |
+
| 0.0529 | 3200 | 6.6074 |
|
316 |
+
| 0.0545 | 3300 | 6.6141 |
|
317 |
+
| 0.0562 | 3400 | 6.5374 |
|
318 |
+
| 0.0578 | 3500 | 6.4776 |
|
319 |
+
| 0.0595 | 3600 | 6.5701 |
|
320 |
+
| 0.0611 | 3700 | 6.5026 |
|
321 |
+
| 0.0628 | 3800 | 6.6502 |
|
322 |
+
| 0.0644 | 3900 | 6.5023 |
|
323 |
+
| 0.0661 | 4000 | 6.5526 |
|
324 |
+
| 0.0677 | 4100 | 6.6594 |
|
325 |
+
| 0.0694 | 4200 | 6.3643 |
|
326 |
+
| 0.0710 | 4300 | 6.3783 |
|
327 |
+
| 0.0727 | 4400 | 6.3222 |
|
328 |
+
| 0.0743 | 4500 | 6.3401 |
|
329 |
+
| 0.0760 | 4600 | 6.4005 |
|
330 |
+
| 0.0776 | 4700 | 6.3605 |
|
331 |
+
| 0.0793 | 4800 | 6.348 |
|
332 |
+
| 0.0810 | 4900 | 6.3406 |
|
333 |
+
| 0.0826 | 5000 | 6.4156 |
|
334 |
+
| 0.0843 | 5100 | 6.3786 |
|
335 |
+
| 0.0859 | 5200 | 6.376 |
|
336 |
+
| 0.0876 | 5300 | 6.2363 |
|
337 |
+
| 0.0892 | 5400 | 6.2185 |
|
338 |
+
| 0.0909 | 5500 | 6.2554 |
|
339 |
+
| 0.0925 | 5600 | 6.2177 |
|
340 |
+
| 0.0942 | 5700 | 6.3924 |
|
341 |
+
| 0.0958 | 5800 | 6.2897 |
|
342 |
+
| 0.0975 | 5900 | 6.272 |
|
343 |
+
| 0.0991 | 6000 | 6.0247 |
|
344 |
+
| 0.1008 | 6100 | 6.194 |
|
345 |
+
| 0.1024 | 6200 | 6.2757 |
|
346 |
+
| 0.1041 | 6300 | 6.2408 |
|
347 |
+
| 0.1057 | 6400 | 6.253 |
|
348 |
+
| 0.1074 | 6500 | 6.0605 |
|
349 |
+
| 0.1090 | 6600 | 6.0672 |
|
350 |
+
| 0.1107 | 6700 | 6.0414 |
|
351 |
+
| 0.1123 | 6800 | 6.0823 |
|
352 |
+
| 0.1140 | 6900 | 6.1962 |
|
353 |
+
| 0.1156 | 7000 | 6.0868 |
|
354 |
+
| 0.1173 | 7100 | 6.0795 |
|
355 |
+
| 0.1189 | 7200 | 5.9656 |
|
356 |
+
| 0.1206 | 7300 | 5.9785 |
|
357 |
+
| 0.1223 | 7400 | 6.0722 |
|
358 |
+
| 0.1239 | 7500 | 5.9443 |
|
359 |
+
| 0.1256 | 7600 | 5.8786 |
|
360 |
+
| 0.1272 | 7700 | 5.8007 |
|
361 |
+
| 0.1289 | 7800 | 5.9206 |
|
362 |
+
| 0.1305 | 7900 | 5.918 |
|
363 |
+
| 0.1322 | 8000 | 5.9443 |
|
364 |
+
| 0.1338 | 8100 | 5.8764 |
|
365 |
+
| 0.1355 | 8200 | 5.867 |
|
366 |
+
| 0.1371 | 8300 | 5.8087 |
|
367 |
+
| 0.1388 | 8400 | 5.9884 |
|
368 |
+
| 0.1404 | 8500 | 5.8741 |
|
369 |
+
| 0.1421 | 8600 | 5.9699 |
|
370 |
+
| 0.1437 | 8700 | 5.8671 |
|
371 |
+
| 0.1454 | 8800 | 5.8278 |
|
372 |
+
| 0.1470 | 8900 | 5.8892 |
|
373 |
+
| 0.1487 | 9000 | 5.7437 |
|
374 |
+
| 0.1503 | 9100 | 5.8069 |
|
375 |
+
| 0.1520 | 9200 | 6.0235 |
|
376 |
+
| 0.1536 | 9300 | 5.7214 |
|
377 |
+
| 0.1553 | 9400 | 5.7893 |
|
378 |
+
| 0.1569 | 9500 | 5.7406 |
|
379 |
+
| 0.1586 | 9600 | 5.8035 |
|
380 |
+
| 0.1602 | 9700 | 5.7965 |
|
381 |
+
| 0.1619 | 9800 | 5.638 |
|
382 |
+
| 0.1636 | 9900 | 5.8263 |
|
383 |
+
| 0.1652 | 10000 | 5.7995 |
|
384 |
+
| 0.1669 | 10100 | 5.5805 |
|
385 |
+
| 0.1685 | 10200 | 5.632 |
|
386 |
+
| 0.1702 | 10300 | 5.6944 |
|
387 |
+
| 0.1718 | 10400 | 5.5818 |
|
388 |
+
| 0.1735 | 10500 | 5.8598 |
|
389 |
+
| 0.1751 | 10600 | 5.7255 |
|
390 |
+
| 0.1768 | 10700 | 5.7536 |
|
391 |
+
| 0.1784 | 10800 | 5.6536 |
|
392 |
+
| 0.1801 | 10900 | 5.6417 |
|
393 |
+
| 0.1817 | 11000 | 5.6719 |
|
394 |
+
| 0.1834 | 11100 | 5.566 |
|
395 |
+
| 0.1850 | 11200 | 5.4893 |
|
396 |
+
| 0.1867 | 11300 | 5.7412 |
|
397 |
+
| 0.1883 | 11400 | 5.6838 |
|
398 |
+
| 0.1900 | 11500 | 5.6272 |
|
399 |
+
| 0.1916 | 11600 | 5.6538 |
|
400 |
+
| 0.1933 | 11700 | 5.7176 |
|
401 |
+
| 0.1949 | 11800 | 5.4923 |
|
402 |
+
| 0.1966 | 11900 | 5.7643 |
|
403 |
+
| 0.1982 | 12000 | 5.5674 |
|
404 |
+
| 0.1999 | 12100 | 5.6896 |
|
405 |
+
| 0.2015 | 12200 | 5.4385 |
|
406 |
+
| 0.2032 | 12300 | 5.5851 |
|
407 |
+
| 0.2049 | 12400 | 5.5132 |
|
408 |
+
| 0.2065 | 12500 | 5.3329 |
|
409 |
+
| 0.2082 | 12600 | 5.4218 |
|
410 |
+
| 0.2098 | 12700 | 5.5171 |
|
411 |
+
| 0.2115 | 12800 | 5.3414 |
|
412 |
+
| 0.2131 | 12900 | 5.4921 |
|
413 |
+
| 0.2148 | 13000 | 5.7687 |
|
414 |
+
| 0.2164 | 13100 | 5.7119 |
|
415 |
+
| 0.2181 | 13200 | 5.4975 |
|
416 |
+
| 0.2197 | 13300 | 5.4514 |
|
417 |
+
| 0.2214 | 13400 | 5.497 |
|
418 |
+
| 0.2230 | 13500 | 5.558 |
|
419 |
+
| 0.2247 | 13600 | 5.4207 |
|
420 |
+
| 0.2263 | 13700 | 5.5901 |
|
421 |
+
| 0.2280 | 13800 | 5.2041 |
|
422 |
+
| 0.2296 | 13900 | 5.2999 |
|
423 |
+
| 0.2313 | 14000 | 5.3373 |
|
424 |
+
| 0.2329 | 14100 | 5.789 |
|
425 |
+
| 0.2346 | 14200 | 5.3292 |
|
426 |
+
| 0.2362 | 14300 | 5.4059 |
|
427 |
+
| 0.2379 | 14400 | 5.1849 |
|
428 |
+
| 0.2395 | 14500 | 5.1262 |
|
429 |
+
| 0.2412 | 14600 | 5.4339 |
|
430 |
+
| 0.2429 | 14700 | 5.5185 |
|
431 |
+
| 0.2445 | 14800 | 5.3286 |
|
432 |
+
| 0.2462 | 14900 | 5.4141 |
|
433 |
+
| 0.2478 | 15000 | 5.3554 |
|
434 |
+
| 0.2495 | 15100 | 5.3489 |
|
435 |
+
| 0.2511 | 15200 | 5.4849 |
|
436 |
+
| 0.2528 | 15300 | 5.3656 |
|
437 |
+
| 0.2544 | 15400 | 5.32 |
|
438 |
+
| 0.2561 | 15500 | 5.3523 |
|
439 |
+
| 0.2577 | 15600 | 5.1146 |
|
440 |
+
| 0.2594 | 15700 | 5.2816 |
|
441 |
+
| 0.2610 | 15800 | 5.2296 |
|
442 |
+
| 0.2627 | 15900 | 5.3386 |
|
443 |
+
| 0.2643 | 16000 | 5.4917 |
|
444 |
+
| 0.2660 | 16100 | 5.0524 |
|
445 |
+
| 0.2676 | 16200 | 5.1657 |
|
446 |
+
| 0.2693 | 16300 | 5.1431 |
|
447 |
+
| 0.2709 | 16400 | 5.166 |
|
448 |
+
| 0.2726 | 16500 | 5.5738 |
|
449 |
+
| 0.2742 | 16600 | 5.2088 |
|
450 |
+
| 0.2759 | 16700 | 5.2198 |
|
451 |
+
| 0.2775 | 16800 | 5.2709 |
|
452 |
+
| 0.2792 | 16900 | 5.4027 |
|
453 |
+
| 0.2808 | 17000 | 5.25 |
|
454 |
+
| 0.2825 | 17100 | 5.1519 |
|
455 |
+
| 0.2842 | 17200 | 5.1347 |
|
456 |
+
| 0.2858 | 17300 | 5.2346 |
|
457 |
+
| 0.2875 | 17400 | 5.4128 |
|
458 |
+
| 0.2891 | 17500 | 5.1954 |
|
459 |
+
| 0.2908 | 17600 | 5.3787 |
|
460 |
+
| 0.2924 | 17700 | 5.1731 |
|
461 |
+
| 0.2941 | 17800 | 5.3714 |
|
462 |
+
| 0.2957 | 17900 | 5.2113 |
|
463 |
+
| 0.2974 | 18000 | 5.0819 |
|
464 |
+
| 0.2990 | 18100 | 5.0443 |
|
465 |
+
| 0.3007 | 18200 | 5.2041 |
|
466 |
+
| 0.3023 | 18300 | 5.1385 |
|
467 |
+
| 0.3040 | 18400 | 5.2195 |
|
468 |
+
| 0.3056 | 18500 | 5.2233 |
|
469 |
+
| 0.3073 | 18600 | 5.1198 |
|
470 |
+
| 0.3089 | 18700 | 5.106 |
|
471 |
+
| 0.3106 | 18800 | 5.335 |
|
472 |
+
| 0.3122 | 18900 | 5.1231 |
|
473 |
+
| 0.3139 | 19000 | 5.1777 |
|
474 |
+
| 0.3155 | 19100 | 5.5752 |
|
475 |
+
| 0.3172 | 19200 | 5.1902 |
|
476 |
+
| 0.3188 | 19300 | 5.0777 |
|
477 |
+
| 0.3205 | 19400 | 5.211 |
|
478 |
+
| 0.3221 | 19500 | 5.1402 |
|
479 |
+
| 0.3238 | 19600 | 5.1458 |
|
480 |
+
| 0.3255 | 19700 | 5.1091 |
|
481 |
+
| 0.3271 | 19800 | 5.1471 |
|
482 |
+
| 0.3288 | 19900 | 5.1804 |
|
483 |
+
| 0.3304 | 20000 | 4.9678 |
|
484 |
+
| 0.3321 | 20100 | 5.1655 |
|
485 |
+
| 0.3337 | 20200 | 4.9735 |
|
486 |
+
| 0.3354 | 20300 | 5.0536 |
|
487 |
+
| 0.3370 | 20400 | 5.347 |
|
488 |
+
| 0.3387 | 20500 | 4.9856 |
|
489 |
+
| 0.3403 | 20600 | 5.1035 |
|
490 |
+
| 0.3420 | 20700 | 5.0428 |
|
491 |
+
| 0.3436 | 20800 | 5.0856 |
|
492 |
+
| 0.3453 | 20900 | 5.0776 |
|
493 |
+
| 0.3469 | 21000 | 5.2031 |
|
494 |
+
| 0.3486 | 21100 | 5.1491 |
|
495 |
+
| 0.3502 | 21200 | 5.3685 |
|
496 |
+
| 0.3519 | 21300 | 4.6901 |
|
497 |
+
| 0.3535 | 21400 | 4.9809 |
|
498 |
+
| 0.3552 | 21500 | 4.9273 |
|
499 |
+
| 0.3568 | 21600 | 4.7568 |
|
500 |
+
| 0.3585 | 21700 | 4.9064 |
|
501 |
+
| 0.3601 | 21800 | 5.0399 |
|
502 |
+
| 0.3618 | 21900 | 4.9202 |
|
503 |
+
| 0.3635 | 22000 | 5.3848 |
|
504 |
+
| 0.3651 | 22100 | 4.9239 |
|
505 |
+
| 0.3668 | 22200 | 4.8744 |
|
506 |
+
| 0.3684 | 22300 | 4.8597 |
|
507 |
+
| 0.3701 | 22400 | 4.9226 |
|
508 |
+
| 0.3717 | 22500 | 5.0358 |
|
509 |
+
| 0.3734 | 22600 | 4.9895 |
|
510 |
+
| 0.3750 | 22700 | 5.004 |
|
511 |
+
| 0.3767 | 22800 | 5.0441 |
|
512 |
+
| 0.3783 | 22900 | 4.8129 |
|
513 |
+
| 0.3800 | 23000 | 4.7954 |
|
514 |
+
| 0.3816 | 23100 | 4.8156 |
|
515 |
+
| 0.3833 | 23200 | 5.0714 |
|
516 |
+
| 0.3849 | 23300 | 4.8543 |
|
517 |
+
| 0.3866 | 23400 | 5.1728 |
|
518 |
+
| 0.3882 | 23500 | 5.1891 |
|
519 |
+
| 0.3899 | 23600 | 5.087 |
|
520 |
+
| 0.3915 | 23700 | 4.9069 |
|
521 |
+
| 0.3932 | 23800 | 4.9357 |
|
522 |
+
| 0.3948 | 23900 | 4.8324 |
|
523 |
+
| 0.3965 | 24000 | 4.8091 |
|
524 |
+
| 0.3981 | 24100 | 4.7944 |
|
525 |
+
| 0.3998 | 24200 | 5.0023 |
|
526 |
+
| 0.4014 | 24300 | 4.8745 |
|
527 |
+
| 0.4031 | 24400 | 5.0884 |
|
528 |
+
| 0.4048 | 24500 | 5.0468 |
|
529 |
+
| 0.4064 | 24600 | 4.8575 |
|
530 |
+
| 0.4081 | 24700 | 4.7555 |
|
531 |
+
| 0.4097 | 24800 | 4.6052 |
|
532 |
+
| 0.4114 | 24900 | 4.8935 |
|
533 |
+
| 0.4130 | 25000 | 4.8049 |
|
534 |
+
| 0.4147 | 25100 | 4.9014 |
|
535 |
+
| 0.4163 | 25200 | 4.7199 |
|
536 |
+
| 0.4180 | 25300 | 4.6999 |
|
537 |
+
| 0.4196 | 25400 | 4.6417 |
|
538 |
+
| 0.4213 | 25500 | 5.2115 |
|
539 |
+
| 0.4229 | 25600 | 4.9171 |
|
540 |
+
| 0.4246 | 25700 | 4.9448 |
|
541 |
+
| 0.4262 | 25800 | 4.6811 |
|
542 |
+
| 0.4279 | 25900 | 5.1181 |
|
543 |
+
| 0.4295 | 26000 | 4.8061 |
|
544 |
+
| 0.4312 | 26100 | 4.815 |
|
545 |
+
| 0.4328 | 26200 | 4.7731 |
|
546 |
+
| 0.4345 | 26300 | 4.7304 |
|
547 |
+
| 0.4361 | 26400 | 4.9838 |
|
548 |
+
| 0.4378 | 26500 | 4.7998 |
|
549 |
+
| 0.4394 | 26600 | 4.6946 |
|
550 |
+
| 0.4411 | 26700 | 4.7755 |
|
551 |
+
| 0.4427 | 26800 | 4.7347 |
|
552 |
+
| 0.4444 | 26900 | 4.8356 |
|
553 |
+
| 0.4461 | 27000 | 4.8642 |
|
554 |
+
| 0.4477 | 27100 | 4.9273 |
|
555 |
+
| 0.4494 | 27200 | 4.7114 |
|
556 |
+
| 0.4510 | 27300 | 4.6088 |
|
557 |
+
| 0.4527 | 27400 | 4.5046 |
|
558 |
+
| 0.4543 | 27500 | 4.4516 |
|
559 |
+
| 0.4560 | 27600 | 4.7491 |
|
560 |
+
| 0.4576 | 27700 | 4.943 |
|
561 |
+
| 0.4593 | 27800 | 4.877 |
|
562 |
+
| 0.4609 | 27900 | 4.6912 |
|
563 |
+
| 0.4626 | 28000 | 4.8373 |
|
564 |
+
| 0.4642 | 28100 | 5.0152 |
|
565 |
+
| 0.4659 | 28200 | 4.7008 |
|
566 |
+
| 0.4675 | 28300 | 4.7549 |
|
567 |
+
| 0.4692 | 28400 | 4.5287 |
|
568 |
+
| 0.4708 | 28500 | 4.8211 |
|
569 |
+
| 0.4725 | 28600 | 4.775 |
|
570 |
+
| 0.4741 | 28700 | 4.6977 |
|
571 |
+
| 0.4758 | 28800 | 4.9122 |
|
572 |
+
| 0.4774 | 28900 | 4.9067 |
|
573 |
+
| 0.4791 | 29000 | 4.8326 |
|
574 |
+
| 0.4807 | 29100 | 4.4536 |
|
575 |
+
| 0.4824 | 29200 | 5.0073 |
|
576 |
+
| 0.4840 | 29300 | 4.5887 |
|
577 |
+
| 0.4857 | 29400 | 4.7829 |
|
578 |
+
| 0.4874 | 29500 | 4.6503 |
|
579 |
+
| 0.4890 | 29600 | 4.5202 |
|
580 |
+
| 0.4907 | 29700 | 4.9086 |
|
581 |
+
| 0.4923 | 29800 | 4.743 |
|
582 |
+
| 0.4940 | 29900 | 4.7819 |
|
583 |
+
| 0.4956 | 30000 | 4.6159 |
|
584 |
+
| 0.4973 | 30100 | 5.015 |
|
585 |
+
| 0.4989 | 30200 | 4.5351 |
|
586 |
+
| 0.5006 | 30300 | 5.0421 |
|
587 |
+
| 0.5022 | 30400 | 4.5394 |
|
588 |
+
| 0.5039 | 30500 | 4.7516 |
|
589 |
+
| 0.5055 | 30600 | 4.9236 |
|
590 |
+
| 0.5072 | 30700 | 4.833 |
|
591 |
+
| 0.5088 | 30800 | 4.5406 |
|
592 |
+
| 0.5105 | 30900 | 4.7325 |
|
593 |
+
| 0.5121 | 31000 | 4.6807 |
|
594 |
+
| 0.5138 | 31100 | 4.6052 |
|
595 |
+
| 0.5154 | 31200 | 4.7922 |
|
596 |
+
| 0.5171 | 31300 | 4.5013 |
|
597 |
+
| 0.5187 | 31400 | 4.6579 |
|
598 |
+
| 0.5204 | 31500 | 4.5152 |
|
599 |
+
| 0.5220 | 31600 | 4.535 |
|
600 |
+
| 0.5237 | 31700 | 4.4473 |
|
601 |
+
| 0.5254 | 31800 | 5.0363 |
|
602 |
+
| 0.5270 | 31900 | 4.4849 |
|
603 |
+
| 0.5287 | 32000 | 4.6337 |
|
604 |
+
| 0.5303 | 32100 | 4.3874 |
|
605 |
+
| 0.5320 | 32200 | 4.6289 |
|
606 |
+
| 0.5336 | 32300 | 4.5746 |
|
607 |
+
| 0.5353 | 32400 | 4.7222 |
|
608 |
+
| 0.5369 | 32500 | 4.3974 |
|
609 |
+
| 0.5386 | 32600 | 4.8369 |
|
610 |
+
| 0.5402 | 32700 | 4.6921 |
|
611 |
+
| 0.5419 | 32800 | 4.603 |
|
612 |
+
| 0.5435 | 32900 | 4.4542 |
|
613 |
+
| 0.5452 | 33000 | 4.6976 |
|
614 |
+
| 0.5468 | 33100 | 4.5403 |
|
615 |
+
| 0.5485 | 33200 | 4.7398 |
|
616 |
+
| 0.5501 | 33300 | 4.9736 |
|
617 |
+
| 0.5518 | 33400 | 4.6373 |
|
618 |
+
| 0.5534 | 33500 | 4.7195 |
|
619 |
+
| 0.5551 | 33600 | 4.4237 |
|
620 |
+
| 0.5567 | 33700 | 4.4319 |
|
621 |
+
| 0.5584 | 33800 | 4.6785 |
|
622 |
+
| 0.5600 | 33900 | 4.6265 |
|
623 |
+
| 0.5617 | 34000 | 4.8585 |
|
624 |
+
| 0.5633 | 34100 | 4.7605 |
|
625 |
+
| 0.5650 | 34200 | 4.5328 |
|
626 |
+
| 0.5667 | 34300 | 4.4722 |
|
627 |
+
| 0.5683 | 34400 | 4.5651 |
|
628 |
+
| 0.5700 | 34500 | 4.5748 |
|
629 |
+
| 0.5716 | 34600 | 4.4733 |
|
630 |
+
| 0.5733 | 34700 | 4.5675 |
|
631 |
+
| 0.5749 | 34800 | 4.7731 |
|
632 |
+
| 0.5766 | 34900 | 4.5179 |
|
633 |
+
| 0.5782 | 35000 | 4.5138 |
|
634 |
+
| 0.5799 | 35100 | 4.4146 |
|
635 |
+
| 0.5815 | 35200 | 4.3349 |
|
636 |
+
| 0.5832 | 35300 | 4.6789 |
|
637 |
+
| 0.5848 | 35400 | 4.6405 |
|
638 |
+
| 0.5865 | 35500 | 4.6118 |
|
639 |
+
| 0.5881 | 35600 | 4.5165 |
|
640 |
+
| 0.5898 | 35700 | 4.5453 |
|
641 |
+
| 0.5914 | 35800 | 4.5286 |
|
642 |
+
| 0.5931 | 35900 | 4.4041 |
|
643 |
+
| 0.5947 | 36000 | 4.5261 |
|
644 |
+
| 0.5964 | 36100 | 4.3889 |
|
645 |
+
| 0.5980 | 36200 | 4.4186 |
|
646 |
+
| 0.5997 | 36300 | 4.7924 |
|
647 |
+
| 0.6013 | 36400 | 4.6042 |
|
648 |
+
| 0.6030 | 36500 | 4.8725 |
|
649 |
+
| 0.6046 | 36600 | 4.509 |
|
650 |
+
| 0.6063 | 36700 | 4.3407 |
|
651 |
+
| 0.6080 | 36800 | 4.5877 |
|
652 |
+
| 0.6096 | 36900 | 4.6656 |
|
653 |
+
| 0.6113 | 37000 | 4.405 |
|
654 |
+
| 0.6129 | 37100 | 4.3588 |
|
655 |
+
| 0.6146 | 37200 | 4.7821 |
|
656 |
+
| 0.6162 | 37300 | 4.4748 |
|
657 |
+
| 0.6179 | 37400 | 4.6611 |
|
658 |
+
| 0.6195 | 37500 | 4.6503 |
|
659 |
+
| 0.6212 | 37600 | 4.3817 |
|
660 |
+
| 0.6228 | 37700 | 4.3708 |
|
661 |
+
| 0.6245 | 37800 | 4.3686 |
|
662 |
+
| 0.6261 | 37900 | 4.2679 |
|
663 |
+
| 0.6278 | 38000 | 4.4258 |
|
664 |
+
| 0.6294 | 38100 | 4.1701 |
|
665 |
+
| 0.6311 | 38200 | 4.3627 |
|
666 |
+
| 0.6327 | 38300 | 4.4051 |
|
667 |
+
| 0.6344 | 38400 | 4.4693 |
|
668 |
+
| 0.6360 | 38500 | 4.3831 |
|
669 |
+
| 0.6377 | 38600 | 4.0856 |
|
670 |
+
| 0.6393 | 38700 | 4.7917 |
|
671 |
+
| 0.6410 | 38800 | 4.4803 |
|
672 |
+
| 0.6426 | 38900 | 4.7869 |
|
673 |
+
| 0.6443 | 39000 | 4.5376 |
|
674 |
+
| 0.6460 | 39100 | 4.4829 |
|
675 |
+
| 0.6476 | 39200 | 4.7344 |
|
676 |
+
| 0.6493 | 39300 | 4.4035 |
|
677 |
+
| 0.6509 | 39400 | 4.5464 |
|
678 |
+
| 0.6526 | 39500 | 4.3932 |
|
679 |
+
| 0.6542 | 39600 | 4.3088 |
|
680 |
+
| 0.6559 | 39700 | 4.3844 |
|
681 |
+
| 0.6575 | 39800 | 4.4635 |
|
682 |
+
| 0.6592 | 39900 | 4.205 |
|
683 |
+
| 0.6608 | 40000 | 4.5705 |
|
684 |
+
| 0.6625 | 40100 | 4.541 |
|
685 |
+
| 0.6641 | 40200 | 4.2803 |
|
686 |
+
| 0.6658 | 40300 | 4.4778 |
|
687 |
+
| 0.6674 | 40400 | 4.3103 |
|
688 |
+
| 0.6691 | 40500 | 4.4215 |
|
689 |
+
| 0.6707 | 40600 | 4.1347 |
|
690 |
+
| 0.6724 | 40700 | 4.4549 |
|
691 |
+
| 0.6740 | 40800 | 4.4641 |
|
692 |
+
| 0.6757 | 40900 | 4.6036 |
|
693 |
+
| 0.6773 | 41000 | 4.1967 |
|
694 |
+
| 0.6790 | 41100 | 4.4231 |
|
695 |
+
| 0.6806 | 41200 | 4.4425 |
|
696 |
+
| 0.6823 | 41300 | 4.5512 |
|
697 |
+
| 0.6839 | 41400 | 4.4586 |
|
698 |
+
| 0.6856 | 41500 | 4.4396 |
|
699 |
+
| 0.6873 | 41600 | 4.281 |
|
700 |
+
| 0.6889 | 41700 | 4.4691 |
|
701 |
+
| 0.6906 | 41800 | 4.299 |
|
702 |
+
| 0.6922 | 41900 | 4.4199 |
|
703 |
+
| 0.6939 | 42000 | 4.325 |
|
704 |
+
| 0.6955 | 42100 | 4.8069 |
|
705 |
+
| 0.6972 | 42200 | 4.4005 |
|
706 |
+
| 0.6988 | 42300 | 4.3462 |
|
707 |
+
| 0.7005 | 42400 | 4.4979 |
|
708 |
+
| 0.7021 | 42500 | 4.3421 |
|
709 |
+
| 0.7038 | 42600 | 4.383 |
|
710 |
+
| 0.7054 | 42700 | 4.2318 |
|
711 |
+
| 0.7071 | 42800 | 4.4444 |
|
712 |
+
| 0.7087 | 42900 | 4.3806 |
|
713 |
+
| 0.7104 | 43000 | 4.468 |
|
714 |
+
| 0.7120 | 43100 | 4.2501 |
|
715 |
+
| 0.7137 | 43200 | 4.3727 |
|
716 |
+
| 0.7153 | 43300 | 4.388 |
|
717 |
+
| 0.7170 | 43400 | 4.3485 |
|
718 |
+
| 0.7186 | 43500 | 4.343 |
|
719 |
+
| 0.7203 | 43600 | 4.4982 |
|
720 |
+
| 0.7219 | 43700 | 4.3745 |
|
721 |
+
| 0.7236 | 43800 | 4.4955 |
|
722 |
+
| 0.7252 | 43900 | 4.4546 |
|
723 |
+
| 0.7269 | 44000 | 4.2144 |
|
724 |
+
| 0.7286 | 44100 | 4.5755 |
|
725 |
+
| 0.7302 | 44200 | 4.1601 |
|
726 |
+
| 0.7319 | 44300 | 4.2967 |
|
727 |
+
| 0.7335 | 44400 | 4.4625 |
|
728 |
+
| 0.7352 | 44500 | 4.2364 |
|
729 |
+
| 0.7368 | 44600 | 4.5778 |
|
730 |
+
| 0.7385 | 44700 | 4.2853 |
|
731 |
+
| 0.7401 | 44800 | 4.4863 |
|
732 |
+
| 0.7418 | 44900 | 4.1957 |
|
733 |
+
| 0.7434 | 45000 | 4.2534 |
|
734 |
+
| 0.7451 | 45100 | 4.3133 |
|
735 |
+
| 0.7467 | 45200 | 4.5476 |
|
736 |
+
| 0.7484 | 45300 | 4.3681 |
|
737 |
+
| 0.7500 | 45400 | 4.3973 |
|
738 |
+
| 0.7517 | 45500 | 4.1377 |
|
739 |
+
| 0.7533 | 45600 | 4.2803 |
|
740 |
+
| 0.7550 | 45700 | 4.4228 |
|
741 |
+
| 0.7566 | 45800 | 4.0531 |
|
742 |
+
| 0.7583 | 45900 | 3.9899 |
|
743 |
+
| 0.7599 | 46000 | 4.3483 |
|
744 |
+
| 0.7616 | 46100 | 4.1261 |
|
745 |
+
| 0.7632 | 46200 | 4.5054 |
|
746 |
+
| 0.7649 | 46300 | 4.0876 |
|
747 |
+
| 0.7665 | 46400 | 4.3376 |
|
748 |
+
| 0.7682 | 46500 | 4.1925 |
|
749 |
+
| 0.7699 | 46600 | 4.2739 |
|
750 |
+
| 0.7715 | 46700 | 4.3682 |
|
751 |
+
| 0.7732 | 46800 | 4.441 |
|
752 |
+
| 0.7748 | 46900 | 4.4299 |
|
753 |
+
| 0.7765 | 47000 | 4.2043 |
|
754 |
+
| 0.7781 | 47100 | 4.3618 |
|
755 |
+
| 0.7798 | 47200 | 4.1743 |
|
756 |
+
| 0.7814 | 47300 | 4.4187 |
|
757 |
+
| 0.7831 | 47400 | 4.2229 |
|
758 |
+
| 0.7847 | 47500 | 4.3314 |
|
759 |
+
| 0.7864 | 47600 | 4.0925 |
|
760 |
+
| 0.7880 | 47700 | 4.0808 |
|
761 |
+
| 0.7897 | 47800 | 4.5237 |
|
762 |
+
| 0.7913 | 47900 | 4.1168 |
|
763 |
+
| 0.7930 | 48000 | 4.2941 |
|
764 |
+
| 0.7946 | 48100 | 4.384 |
|
765 |
+
| 0.7963 | 48200 | 4.7188 |
|
766 |
+
| 0.7979 | 48300 | 4.3229 |
|
767 |
+
| 0.7996 | 48400 | 4.2011 |
|
768 |
+
| 0.8012 | 48500 | 4.2779 |
|
769 |
+
| 0.8029 | 48600 | 4.3589 |
|
770 |
+
| 0.8045 | 48700 | 4.2659 |
|
771 |
+
| 0.8062 | 48800 | 4.5345 |
|
772 |
+
| 0.8079 | 48900 | 3.7909 |
|
773 |
+
| 0.8095 | 49000 | 4.4958 |
|
774 |
+
| 0.8112 | 49100 | 4.1165 |
|
775 |
+
| 0.8128 | 49200 | 4.1192 |
|
776 |
+
| 0.8145 | 49300 | 4.5164 |
|
777 |
+
| 0.8161 | 49400 | 4.0759 |
|
778 |
+
| 0.8178 | 49500 | 4.2756 |
|
779 |
+
| 0.8194 | 49600 | 4.6745 |
|
780 |
+
| 0.8211 | 49700 | 4.2513 |
|
781 |
+
| 0.8227 | 49800 | 4.0886 |
|
782 |
+
| 0.8244 | 49900 | 4.2688 |
|
783 |
+
| 0.8260 | 50000 | 4.2109 |
|
784 |
+
| 0.8277 | 50100 | 3.9525 |
|
785 |
+
| 0.8293 | 50200 | 4.0889 |
|
786 |
+
| 0.8310 | 50300 | 4.1099 |
|
787 |
+
| 0.8326 | 50400 | 3.9672 |
|
788 |
+
| 0.8343 | 50500 | 4.2584 |
|
789 |
+
| 0.8359 | 50600 | 3.9683 |
|
790 |
+
| 0.8376 | 50700 | 4.1123 |
|
791 |
+
| 0.8392 | 50800 | 4.0991 |
|
792 |
+
| 0.8409 | 50900 | 4.2131 |
|
793 |
+
| 0.8425 | 51000 | 3.9701 |
|
794 |
+
| 0.8442 | 51100 | 4.6632 |
|
795 |
+
| 0.8458 | 51200 | 4.5646 |
|
796 |
+
| 0.8475 | 51300 | 4.3518 |
|
797 |
+
| 0.8492 | 51400 | 4.0883 |
|
798 |
+
| 0.8508 | 51500 | 4.5185 |
|
799 |
+
| 0.8525 | 51600 | 4.3088 |
|
800 |
+
| 0.8541 | 51700 | 4.2788 |
|
801 |
+
| 0.8558 | 51800 | 4.4045 |
|
802 |
+
| 0.8574 | 51900 | 4.1641 |
|
803 |
+
| 0.8591 | 52000 | 4.4632 |
|
804 |
+
| 0.8607 | 52100 | 4.1843 |
|
805 |
+
| 0.8624 | 52200 | 4.2139 |
|
806 |
+
| 0.8640 | 52300 | 4.2557 |
|
807 |
+
| 0.8657 | 52400 | 4.0797 |
|
808 |
+
| 0.8673 | 52500 | 4.0446 |
|
809 |
+
| 0.8690 | 52600 | 4.4987 |
|
810 |
+
| 0.8706 | 52700 | 4.1227 |
|
811 |
+
| 0.8723 | 52800 | 4.097 |
|
812 |
+
| 0.8739 | 52900 | 4.2207 |
|
813 |
+
| 0.8756 | 53000 | 4.1675 |
|
814 |
+
| 0.8772 | 53100 | 3.964 |
|
815 |
+
| 0.8789 | 53200 | 4.3966 |
|
816 |
+
| 0.8805 | 53300 | 4.173 |
|
817 |
+
| 0.8822 | 53400 | 4.704 |
|
818 |
+
| 0.8838 | 53500 | 4.1042 |
|
819 |
+
| 0.8855 | 53600 | 3.9662 |
|
820 |
+
| 0.8871 | 53700 | 4.315 |
|
821 |
+
| 0.8888 | 53800 | 4.295 |
|
822 |
+
| 0.8905 | 53900 | 3.997 |
|
823 |
+
| 0.8921 | 54000 | 4.4502 |
|
824 |
+
| 0.8938 | 54100 | 4.479 |
|
825 |
+
| 0.8954 | 54200 | 4.0461 |
|
826 |
+
| 0.8971 | 54300 | 4.2015 |
|
827 |
+
| 0.8987 | 54400 | 4.3934 |
|
828 |
+
| 0.9004 | 54500 | 4.257 |
|
829 |
+
| 0.9020 | 54600 | 4.2889 |
|
830 |
+
| 0.9037 | 54700 | 4.3432 |
|
831 |
+
| 0.9053 | 54800 | 4.2438 |
|
832 |
+
| 0.9070 | 54900 | 3.9952 |
|
833 |
+
| 0.9086 | 55000 | 4.1644 |
|
834 |
+
| 0.9103 | 55100 | 4.2173 |
|
835 |
+
| 0.9119 | 55200 | 4.4476 |
|
836 |
+
| 0.9136 | 55300 | 4.3303 |
|
837 |
+
| 0.9152 | 55400 | 4.2151 |
|
838 |
+
| 0.9169 | 55500 | 4.188 |
|
839 |
+
| 0.9185 | 55600 | 4.1958 |
|
840 |
+
| 0.9202 | 55700 | 4.305 |
|
841 |
+
| 0.9218 | 55800 | 3.8768 |
|
842 |
+
| 0.9235 | 55900 | 4.2899 |
|
843 |
+
| 0.9251 | 56000 | 4.2238 |
|
844 |
+
| 0.9268 | 56100 | 4.4298 |
|
845 |
+
| 0.9284 | 56200 | 4.325 |
|
846 |
+
| 0.9301 | 56300 | 4.5084 |
|
847 |
+
| 0.9318 | 56400 | 4.1923 |
|
848 |
+
| 0.9334 | 56500 | 4.258 |
|
849 |
+
| 0.9351 | 56600 | 3.9049 |
|
850 |
+
| 0.9367 | 56700 | 4.1926 |
|
851 |
+
| 0.9384 | 56800 | 3.7358 |
|
852 |
+
| 0.9400 | 56900 | 4.1174 |
|
853 |
+
| 0.9417 | 57000 | 4.0027 |
|
854 |
+
| 0.9433 | 57100 | 3.9343 |
|
855 |
+
| 0.9450 | 57200 | 4.1863 |
|
856 |
+
| 0.9466 | 57300 | 4.0725 |
|
857 |
+
| 0.9483 | 57400 | 4.4933 |
|
858 |
+
| 0.9499 | 57500 | 3.9865 |
|
859 |
+
| 0.9516 | 57600 | 3.9649 |
|
860 |
+
| 0.9532 | 57700 | 4.2387 |
|
861 |
+
| 0.9549 | 57800 | 4.2372 |
|
862 |
+
| 0.9565 | 57900 | 3.9313 |
|
863 |
+
| 0.9582 | 58000 | 4.2078 |
|
864 |
+
| 0.9598 | 58100 | 4.3646 |
|
865 |
+
| 0.9615 | 58200 | 4.0848 |
|
866 |
+
| 0.9631 | 58300 | 4.1224 |
|
867 |
+
| 0.9648 | 58400 | 4.2916 |
|
868 |
+
| 0.9664 | 58500 | 4.0903 |
|
869 |
+
| 0.9681 | 58600 | 3.7786 |
|
870 |
+
| 0.9698 | 58700 | 4.038 |
|
871 |
+
| 0.9714 | 58800 | 4.1145 |
|
872 |
+
| 0.9731 | 58900 | 4.0726 |
|
873 |
+
| 0.9747 | 59000 | 3.9669 |
|
874 |
+
| 0.9764 | 59100 | 4.1096 |
|
875 |
+
| 0.9780 | 59200 | 4.2828 |
|
876 |
+
| 0.9797 | 59300 | 4.2423 |
|
877 |
+
| 0.9813 | 59400 | 4.0985 |
|
878 |
+
| 0.9830 | 59500 | 4.6186 |
|
879 |
+
| 0.9846 | 59600 | 4.0591 |
|
880 |
+
| 0.9863 | 59700 | 3.7101 |
|
881 |
+
| 0.9879 | 59800 | 4.1663 |
|
882 |
+
| 0.9896 | 59900 | 3.7786 |
|
883 |
+
| 0.9912 | 60000 | 4.3359 |
|
884 |
+
| 0.9929 | 60100 | 4.1746 |
|
885 |
+
| 0.9945 | 60200 | 4.4696 |
|
886 |
+
| 0.9962 | 60300 | 4.1991 |
|
887 |
+
| 0.9978 | 60400 | 4.2198 |
|
888 |
+
| 0.9995 | 60500 | 4.4005 |
|
889 |
+
|
890 |
+
</details>
|
891 |
+
|
892 |
+
### Framework Versions
|
893 |
+
- Python: 3.8.10
|
894 |
+
- Sentence Transformers: 3.1.1
|
895 |
+
- Transformers: 4.45.2
|
896 |
+
- PyTorch: 2.4.1+cu118
|
897 |
+
- Accelerate: 1.0.1
|
898 |
+
- Datasets: 3.0.1
|
899 |
+
- Tokenizers: 0.20.3
|
900 |
+
|
901 |
+
## Citation
|
902 |
+
|
903 |
+
### BibTeX
|
904 |
+
|
905 |
+
#### Sentence Transformers
|
906 |
+
```bibtex
|
907 |
+
@inproceedings{reimers-2019-sentence-bert,
|
908 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
909 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
910 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
911 |
+
month = "11",
|
912 |
+
year = "2019",
|
913 |
+
publisher = "Association for Computational Linguistics",
|
914 |
+
url = "https://arxiv.org/abs/1908.10084",
|
915 |
+
}
|
916 |
+
```
|
917 |
+
|
918 |
+
#### CoSENTLoss
|
919 |
+
```bibtex
|
920 |
+
@online{kexuefm-8847,
|
921 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
922 |
+
author={Su Jianlin},
|
923 |
+
year={2022},
|
924 |
+
month={Jan},
|
925 |
+
url={https://kexue.fm/archives/8847},
|
926 |
+
}
|
927 |
+
```
|
928 |
+
|
929 |
+
<!--
|
930 |
+
## Glossary
|
931 |
+
|
932 |
+
*Clearly define terms in order to be accessible across audiences.*
|
933 |
+
-->
|
934 |
+
|
935 |
+
<!--
|
936 |
+
## Model Card Authors
|
937 |
+
|
938 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
939 |
+
-->
|
940 |
+
|
941 |
+
<!--
|
942 |
+
## Model Card Contact
|
943 |
+
|
944 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
945 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.4.1+cu118"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9185548ee2404622ffea6847ea3c99c81c4f3061ff6a332e608643329f50493c
|
3 |
+
size 90864192
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|