youssefkhalil320 commited on
Commit
18467b5
·
verified ·
1 Parent(s): b7be946

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - sentence-transformers
10
+ - sentence-similarity
11
+ - feature-extraction
12
+ - generated_from_trainer
13
+ - dataset_size:7747936
14
+ - loss:CoSENTLoss
15
+ widget:
16
+ - source_sentence: mango cake cream cake sponge cake gateau mango gateau cream gateau
17
+ mango sponge cake cream sponge cake mango cream cake mango cream sponge cake mango
18
+ flavored sponge cake layers cream filling decorated with fresh mango slices topped
19
+ with whipped cream serves 10 people mango cream cake sponge cake gateau mango
20
+ gateau with cream filling whipped cream mango cake mango cream sponge cake for
21
+ 10 people
22
+ sentences:
23
+ - vegan dessert
24
+ - oxidized ring
25
+ - cola lip gloss
26
+ - source_sentence: double breasted blouse
27
+ sentences:
28
+ - brushed jersey sweatshirt
29
+ - comfort facial tissues
30
+ - round neck sweatshirt
31
+ - source_sentence: casual shirt
32
+ sentences:
33
+ - adjustable string top
34
+ - foldable spare backpack
35
+ - spring blossom scent shower gel
36
+ - source_sentence: sweet chilli mozzarella stick
37
+ sentences:
38
+ - fragrance free facial cream
39
+ - outdoor basket
40
+ - cobb dressing salad
41
+ - source_sentence: appetizer onion ring
42
+ sentences:
43
+ - high quality sports bra
44
+ - swimmer burkini
45
+ - nuttella pizza
46
+ ---
47
+
48
+ # all-MiniLM-L6-v10-pair_score
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
57
+ - **Maximum Sequence Length:** 256 tokens
58
+ - **Output Dimensionality:** 384 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ - **Language:** en
62
+ - **License:** apache-2.0
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ (2): Normalize()
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("sentence_transformers_model_id")
96
+ # Run inference
97
+ sentences = [
98
+ 'appetizer onion ring',
99
+ 'nuttella pizza',
100
+ 'high quality sports bra',
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 384]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities.shape)
109
+ # [3, 3]
110
+ ```
111
+
112
+ <!--
113
+ ### Direct Usage (Transformers)
114
+
115
+ <details><summary>Click to see the direct usage in Transformers</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Downstream Usage (Sentence Transformers)
122
+
123
+ You can finetune this model on your own dataset.
124
+
125
+ <details><summary>Click to expand</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Hyperparameters
151
+ #### Non-Default Hyperparameters
152
+
153
+ - `eval_strategy`: steps
154
+ - `per_device_train_batch_size`: 128
155
+ - `per_device_eval_batch_size`: 128
156
+ - `learning_rate`: 2e-05
157
+ - `num_train_epochs`: 1
158
+ - `warmup_ratio`: 0.1
159
+ - `fp16`: True
160
+
161
+ #### All Hyperparameters
162
+ <details><summary>Click to expand</summary>
163
+
164
+ - `overwrite_output_dir`: False
165
+ - `do_predict`: False
166
+ - `eval_strategy`: steps
167
+ - `prediction_loss_only`: True
168
+ - `per_device_train_batch_size`: 128
169
+ - `per_device_eval_batch_size`: 128
170
+ - `per_gpu_train_batch_size`: None
171
+ - `per_gpu_eval_batch_size`: None
172
+ - `gradient_accumulation_steps`: 1
173
+ - `eval_accumulation_steps`: None
174
+ - `torch_empty_cache_steps`: None
175
+ - `learning_rate`: 2e-05
176
+ - `weight_decay`: 0.0
177
+ - `adam_beta1`: 0.9
178
+ - `adam_beta2`: 0.999
179
+ - `adam_epsilon`: 1e-08
180
+ - `max_grad_norm`: 1.0
181
+ - `num_train_epochs`: 1
182
+ - `max_steps`: -1
183
+ - `lr_scheduler_type`: linear
184
+ - `lr_scheduler_kwargs`: {}
185
+ - `warmup_ratio`: 0.1
186
+ - `warmup_steps`: 0
187
+ - `log_level`: passive
188
+ - `log_level_replica`: warning
189
+ - `log_on_each_node`: True
190
+ - `logging_nan_inf_filter`: True
191
+ - `save_safetensors`: True
192
+ - `save_on_each_node`: False
193
+ - `save_only_model`: False
194
+ - `restore_callback_states_from_checkpoint`: False
195
+ - `no_cuda`: False
196
+ - `use_cpu`: False
197
+ - `use_mps_device`: False
198
+ - `seed`: 42
199
+ - `data_seed`: None
200
+ - `jit_mode_eval`: False
201
+ - `use_ipex`: False
202
+ - `bf16`: False
203
+ - `fp16`: True
204
+ - `fp16_opt_level`: O1
205
+ - `half_precision_backend`: auto
206
+ - `bf16_full_eval`: False
207
+ - `fp16_full_eval`: False
208
+ - `tf32`: None
209
+ - `local_rank`: 0
210
+ - `ddp_backend`: None
211
+ - `tpu_num_cores`: None
212
+ - `tpu_metrics_debug`: False
213
+ - `debug`: []
214
+ - `dataloader_drop_last`: False
215
+ - `dataloader_num_workers`: 0
216
+ - `dataloader_prefetch_factor`: None
217
+ - `past_index`: -1
218
+ - `disable_tqdm`: False
219
+ - `remove_unused_columns`: True
220
+ - `label_names`: None
221
+ - `load_best_model_at_end`: False
222
+ - `ignore_data_skip`: False
223
+ - `fsdp`: []
224
+ - `fsdp_min_num_params`: 0
225
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
226
+ - `fsdp_transformer_layer_cls_to_wrap`: None
227
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
228
+ - `deepspeed`: None
229
+ - `label_smoothing_factor`: 0.0
230
+ - `optim`: adamw_torch
231
+ - `optim_args`: None
232
+ - `adafactor`: False
233
+ - `group_by_length`: False
234
+ - `length_column_name`: length
235
+ - `ddp_find_unused_parameters`: None
236
+ - `ddp_bucket_cap_mb`: None
237
+ - `ddp_broadcast_buffers`: False
238
+ - `dataloader_pin_memory`: True
239
+ - `dataloader_persistent_workers`: False
240
+ - `skip_memory_metrics`: True
241
+ - `use_legacy_prediction_loop`: False
242
+ - `push_to_hub`: False
243
+ - `resume_from_checkpoint`: None
244
+ - `hub_model_id`: None
245
+ - `hub_strategy`: every_save
246
+ - `hub_private_repo`: False
247
+ - `hub_always_push`: False
248
+ - `gradient_checkpointing`: False
249
+ - `gradient_checkpointing_kwargs`: None
250
+ - `include_inputs_for_metrics`: False
251
+ - `eval_do_concat_batches`: True
252
+ - `fp16_backend`: auto
253
+ - `push_to_hub_model_id`: None
254
+ - `push_to_hub_organization`: None
255
+ - `mp_parameters`:
256
+ - `auto_find_batch_size`: False
257
+ - `full_determinism`: False
258
+ - `torchdynamo`: None
259
+ - `ray_scope`: last
260
+ - `ddp_timeout`: 1800
261
+ - `torch_compile`: False
262
+ - `torch_compile_backend`: None
263
+ - `torch_compile_mode`: None
264
+ - `dispatch_batches`: None
265
+ - `split_batches`: None
266
+ - `include_tokens_per_second`: False
267
+ - `include_num_input_tokens_seen`: False
268
+ - `neftune_noise_alpha`: None
269
+ - `optim_target_modules`: None
270
+ - `batch_eval_metrics`: False
271
+ - `eval_on_start`: False
272
+ - `use_liger_kernel`: False
273
+ - `eval_use_gather_object`: False
274
+ - `batch_sampler`: batch_sampler
275
+ - `multi_dataset_batch_sampler`: proportional
276
+
277
+ </details>
278
+
279
+ ### Training Logs
280
+ <details><summary>Click to expand</summary>
281
+
282
+ | Epoch | Step | Training Loss |
283
+ |:------:|:-----:|:-------------:|
284
+ | 0.0017 | 100 | 13.3171 |
285
+ | 0.0033 | 200 | 12.9799 |
286
+ | 0.0050 | 300 | 12.5133 |
287
+ | 0.0066 | 400 | 11.9388 |
288
+ | 0.0083 | 500 | 11.0616 |
289
+ | 0.0099 | 600 | 10.2712 |
290
+ | 0.0116 | 700 | 9.5253 |
291
+ | 0.0132 | 800 | 8.7706 |
292
+ | 0.0149 | 900 | 8.4333 |
293
+ | 0.0165 | 1000 | 8.0902 |
294
+ | 0.0182 | 1100 | 7.8862 |
295
+ | 0.0198 | 1200 | 7.7362 |
296
+ | 0.0215 | 1300 | 7.6007 |
297
+ | 0.0231 | 1400 | 7.5304 |
298
+ | 0.0248 | 1500 | 7.4249 |
299
+ | 0.0264 | 1600 | 7.3035 |
300
+ | 0.0281 | 1700 | 7.2026 |
301
+ | 0.0297 | 1800 | 7.1572 |
302
+ | 0.0314 | 1900 | 7.0523 |
303
+ | 0.0330 | 2000 | 7.1158 |
304
+ | 0.0347 | 2100 | 6.9856 |
305
+ | 0.0363 | 2200 | 7.0865 |
306
+ | 0.0380 | 2300 | 6.9496 |
307
+ | 0.0396 | 2400 | 6.9294 |
308
+ | 0.0413 | 2500 | 6.8825 |
309
+ | 0.0430 | 2600 | 6.8218 |
310
+ | 0.0446 | 2700 | 6.8416 |
311
+ | 0.0463 | 2800 | 6.7184 |
312
+ | 0.0479 | 2900 | 6.9183 |
313
+ | 0.0496 | 3000 | 6.7166 |
314
+ | 0.0512 | 3100 | 6.6821 |
315
+ | 0.0529 | 3200 | 6.6074 |
316
+ | 0.0545 | 3300 | 6.6141 |
317
+ | 0.0562 | 3400 | 6.5374 |
318
+ | 0.0578 | 3500 | 6.4776 |
319
+ | 0.0595 | 3600 | 6.5701 |
320
+ | 0.0611 | 3700 | 6.5026 |
321
+ | 0.0628 | 3800 | 6.6502 |
322
+ | 0.0644 | 3900 | 6.5023 |
323
+ | 0.0661 | 4000 | 6.5526 |
324
+ | 0.0677 | 4100 | 6.6594 |
325
+ | 0.0694 | 4200 | 6.3643 |
326
+ | 0.0710 | 4300 | 6.3783 |
327
+ | 0.0727 | 4400 | 6.3222 |
328
+ | 0.0743 | 4500 | 6.3401 |
329
+ | 0.0760 | 4600 | 6.4005 |
330
+ | 0.0776 | 4700 | 6.3605 |
331
+ | 0.0793 | 4800 | 6.348 |
332
+ | 0.0810 | 4900 | 6.3406 |
333
+ | 0.0826 | 5000 | 6.4156 |
334
+ | 0.0843 | 5100 | 6.3786 |
335
+ | 0.0859 | 5200 | 6.376 |
336
+ | 0.0876 | 5300 | 6.2363 |
337
+ | 0.0892 | 5400 | 6.2185 |
338
+ | 0.0909 | 5500 | 6.2554 |
339
+ | 0.0925 | 5600 | 6.2177 |
340
+ | 0.0942 | 5700 | 6.3924 |
341
+ | 0.0958 | 5800 | 6.2897 |
342
+ | 0.0975 | 5900 | 6.272 |
343
+ | 0.0991 | 6000 | 6.0247 |
344
+ | 0.1008 | 6100 | 6.194 |
345
+ | 0.1024 | 6200 | 6.2757 |
346
+ | 0.1041 | 6300 | 6.2408 |
347
+ | 0.1057 | 6400 | 6.253 |
348
+ | 0.1074 | 6500 | 6.0605 |
349
+ | 0.1090 | 6600 | 6.0672 |
350
+ | 0.1107 | 6700 | 6.0414 |
351
+ | 0.1123 | 6800 | 6.0823 |
352
+ | 0.1140 | 6900 | 6.1962 |
353
+ | 0.1156 | 7000 | 6.0868 |
354
+ | 0.1173 | 7100 | 6.0795 |
355
+ | 0.1189 | 7200 | 5.9656 |
356
+ | 0.1206 | 7300 | 5.9785 |
357
+ | 0.1223 | 7400 | 6.0722 |
358
+ | 0.1239 | 7500 | 5.9443 |
359
+ | 0.1256 | 7600 | 5.8786 |
360
+ | 0.1272 | 7700 | 5.8007 |
361
+ | 0.1289 | 7800 | 5.9206 |
362
+ | 0.1305 | 7900 | 5.918 |
363
+ | 0.1322 | 8000 | 5.9443 |
364
+ | 0.1338 | 8100 | 5.8764 |
365
+ | 0.1355 | 8200 | 5.867 |
366
+ | 0.1371 | 8300 | 5.8087 |
367
+ | 0.1388 | 8400 | 5.9884 |
368
+ | 0.1404 | 8500 | 5.8741 |
369
+ | 0.1421 | 8600 | 5.9699 |
370
+ | 0.1437 | 8700 | 5.8671 |
371
+ | 0.1454 | 8800 | 5.8278 |
372
+ | 0.1470 | 8900 | 5.8892 |
373
+ | 0.1487 | 9000 | 5.7437 |
374
+ | 0.1503 | 9100 | 5.8069 |
375
+ | 0.1520 | 9200 | 6.0235 |
376
+ | 0.1536 | 9300 | 5.7214 |
377
+ | 0.1553 | 9400 | 5.7893 |
378
+ | 0.1569 | 9500 | 5.7406 |
379
+ | 0.1586 | 9600 | 5.8035 |
380
+ | 0.1602 | 9700 | 5.7965 |
381
+ | 0.1619 | 9800 | 5.638 |
382
+ | 0.1636 | 9900 | 5.8263 |
383
+ | 0.1652 | 10000 | 5.7995 |
384
+ | 0.1669 | 10100 | 5.5805 |
385
+ | 0.1685 | 10200 | 5.632 |
386
+ | 0.1702 | 10300 | 5.6944 |
387
+ | 0.1718 | 10400 | 5.5818 |
388
+ | 0.1735 | 10500 | 5.8598 |
389
+ | 0.1751 | 10600 | 5.7255 |
390
+ | 0.1768 | 10700 | 5.7536 |
391
+ | 0.1784 | 10800 | 5.6536 |
392
+ | 0.1801 | 10900 | 5.6417 |
393
+ | 0.1817 | 11000 | 5.6719 |
394
+ | 0.1834 | 11100 | 5.566 |
395
+ | 0.1850 | 11200 | 5.4893 |
396
+ | 0.1867 | 11300 | 5.7412 |
397
+ | 0.1883 | 11400 | 5.6838 |
398
+ | 0.1900 | 11500 | 5.6272 |
399
+ | 0.1916 | 11600 | 5.6538 |
400
+ | 0.1933 | 11700 | 5.7176 |
401
+ | 0.1949 | 11800 | 5.4923 |
402
+ | 0.1966 | 11900 | 5.7643 |
403
+ | 0.1982 | 12000 | 5.5674 |
404
+ | 0.1999 | 12100 | 5.6896 |
405
+ | 0.2015 | 12200 | 5.4385 |
406
+ | 0.2032 | 12300 | 5.5851 |
407
+ | 0.2049 | 12400 | 5.5132 |
408
+ | 0.2065 | 12500 | 5.3329 |
409
+ | 0.2082 | 12600 | 5.4218 |
410
+ | 0.2098 | 12700 | 5.5171 |
411
+ | 0.2115 | 12800 | 5.3414 |
412
+ | 0.2131 | 12900 | 5.4921 |
413
+ | 0.2148 | 13000 | 5.7687 |
414
+ | 0.2164 | 13100 | 5.7119 |
415
+ | 0.2181 | 13200 | 5.4975 |
416
+ | 0.2197 | 13300 | 5.4514 |
417
+ | 0.2214 | 13400 | 5.497 |
418
+ | 0.2230 | 13500 | 5.558 |
419
+ | 0.2247 | 13600 | 5.4207 |
420
+ | 0.2263 | 13700 | 5.5901 |
421
+ | 0.2280 | 13800 | 5.2041 |
422
+ | 0.2296 | 13900 | 5.2999 |
423
+ | 0.2313 | 14000 | 5.3373 |
424
+ | 0.2329 | 14100 | 5.789 |
425
+ | 0.2346 | 14200 | 5.3292 |
426
+ | 0.2362 | 14300 | 5.4059 |
427
+ | 0.2379 | 14400 | 5.1849 |
428
+ | 0.2395 | 14500 | 5.1262 |
429
+ | 0.2412 | 14600 | 5.4339 |
430
+ | 0.2429 | 14700 | 5.5185 |
431
+ | 0.2445 | 14800 | 5.3286 |
432
+ | 0.2462 | 14900 | 5.4141 |
433
+ | 0.2478 | 15000 | 5.3554 |
434
+ | 0.2495 | 15100 | 5.3489 |
435
+ | 0.2511 | 15200 | 5.4849 |
436
+ | 0.2528 | 15300 | 5.3656 |
437
+ | 0.2544 | 15400 | 5.32 |
438
+ | 0.2561 | 15500 | 5.3523 |
439
+ | 0.2577 | 15600 | 5.1146 |
440
+ | 0.2594 | 15700 | 5.2816 |
441
+ | 0.2610 | 15800 | 5.2296 |
442
+ | 0.2627 | 15900 | 5.3386 |
443
+ | 0.2643 | 16000 | 5.4917 |
444
+ | 0.2660 | 16100 | 5.0524 |
445
+ | 0.2676 | 16200 | 5.1657 |
446
+ | 0.2693 | 16300 | 5.1431 |
447
+ | 0.2709 | 16400 | 5.166 |
448
+ | 0.2726 | 16500 | 5.5738 |
449
+ | 0.2742 | 16600 | 5.2088 |
450
+ | 0.2759 | 16700 | 5.2198 |
451
+ | 0.2775 | 16800 | 5.2709 |
452
+ | 0.2792 | 16900 | 5.4027 |
453
+ | 0.2808 | 17000 | 5.25 |
454
+ | 0.2825 | 17100 | 5.1519 |
455
+ | 0.2842 | 17200 | 5.1347 |
456
+ | 0.2858 | 17300 | 5.2346 |
457
+ | 0.2875 | 17400 | 5.4128 |
458
+ | 0.2891 | 17500 | 5.1954 |
459
+ | 0.2908 | 17600 | 5.3787 |
460
+ | 0.2924 | 17700 | 5.1731 |
461
+ | 0.2941 | 17800 | 5.3714 |
462
+ | 0.2957 | 17900 | 5.2113 |
463
+ | 0.2974 | 18000 | 5.0819 |
464
+ | 0.2990 | 18100 | 5.0443 |
465
+ | 0.3007 | 18200 | 5.2041 |
466
+ | 0.3023 | 18300 | 5.1385 |
467
+ | 0.3040 | 18400 | 5.2195 |
468
+ | 0.3056 | 18500 | 5.2233 |
469
+ | 0.3073 | 18600 | 5.1198 |
470
+ | 0.3089 | 18700 | 5.106 |
471
+ | 0.3106 | 18800 | 5.335 |
472
+ | 0.3122 | 18900 | 5.1231 |
473
+ | 0.3139 | 19000 | 5.1777 |
474
+ | 0.3155 | 19100 | 5.5752 |
475
+ | 0.3172 | 19200 | 5.1902 |
476
+ | 0.3188 | 19300 | 5.0777 |
477
+ | 0.3205 | 19400 | 5.211 |
478
+ | 0.3221 | 19500 | 5.1402 |
479
+ | 0.3238 | 19600 | 5.1458 |
480
+ | 0.3255 | 19700 | 5.1091 |
481
+ | 0.3271 | 19800 | 5.1471 |
482
+ | 0.3288 | 19900 | 5.1804 |
483
+ | 0.3304 | 20000 | 4.9678 |
484
+ | 0.3321 | 20100 | 5.1655 |
485
+ | 0.3337 | 20200 | 4.9735 |
486
+ | 0.3354 | 20300 | 5.0536 |
487
+ | 0.3370 | 20400 | 5.347 |
488
+ | 0.3387 | 20500 | 4.9856 |
489
+ | 0.3403 | 20600 | 5.1035 |
490
+ | 0.3420 | 20700 | 5.0428 |
491
+ | 0.3436 | 20800 | 5.0856 |
492
+ | 0.3453 | 20900 | 5.0776 |
493
+ | 0.3469 | 21000 | 5.2031 |
494
+ | 0.3486 | 21100 | 5.1491 |
495
+ | 0.3502 | 21200 | 5.3685 |
496
+ | 0.3519 | 21300 | 4.6901 |
497
+ | 0.3535 | 21400 | 4.9809 |
498
+ | 0.3552 | 21500 | 4.9273 |
499
+ | 0.3568 | 21600 | 4.7568 |
500
+ | 0.3585 | 21700 | 4.9064 |
501
+ | 0.3601 | 21800 | 5.0399 |
502
+ | 0.3618 | 21900 | 4.9202 |
503
+ | 0.3635 | 22000 | 5.3848 |
504
+ | 0.3651 | 22100 | 4.9239 |
505
+ | 0.3668 | 22200 | 4.8744 |
506
+ | 0.3684 | 22300 | 4.8597 |
507
+ | 0.3701 | 22400 | 4.9226 |
508
+ | 0.3717 | 22500 | 5.0358 |
509
+ | 0.3734 | 22600 | 4.9895 |
510
+ | 0.3750 | 22700 | 5.004 |
511
+ | 0.3767 | 22800 | 5.0441 |
512
+ | 0.3783 | 22900 | 4.8129 |
513
+ | 0.3800 | 23000 | 4.7954 |
514
+ | 0.3816 | 23100 | 4.8156 |
515
+ | 0.3833 | 23200 | 5.0714 |
516
+ | 0.3849 | 23300 | 4.8543 |
517
+ | 0.3866 | 23400 | 5.1728 |
518
+ | 0.3882 | 23500 | 5.1891 |
519
+ | 0.3899 | 23600 | 5.087 |
520
+ | 0.3915 | 23700 | 4.9069 |
521
+ | 0.3932 | 23800 | 4.9357 |
522
+ | 0.3948 | 23900 | 4.8324 |
523
+ | 0.3965 | 24000 | 4.8091 |
524
+ | 0.3981 | 24100 | 4.7944 |
525
+ | 0.3998 | 24200 | 5.0023 |
526
+ | 0.4014 | 24300 | 4.8745 |
527
+ | 0.4031 | 24400 | 5.0884 |
528
+ | 0.4048 | 24500 | 5.0468 |
529
+ | 0.4064 | 24600 | 4.8575 |
530
+ | 0.4081 | 24700 | 4.7555 |
531
+ | 0.4097 | 24800 | 4.6052 |
532
+ | 0.4114 | 24900 | 4.8935 |
533
+ | 0.4130 | 25000 | 4.8049 |
534
+ | 0.4147 | 25100 | 4.9014 |
535
+ | 0.4163 | 25200 | 4.7199 |
536
+ | 0.4180 | 25300 | 4.6999 |
537
+ | 0.4196 | 25400 | 4.6417 |
538
+ | 0.4213 | 25500 | 5.2115 |
539
+ | 0.4229 | 25600 | 4.9171 |
540
+ | 0.4246 | 25700 | 4.9448 |
541
+ | 0.4262 | 25800 | 4.6811 |
542
+ | 0.4279 | 25900 | 5.1181 |
543
+ | 0.4295 | 26000 | 4.8061 |
544
+ | 0.4312 | 26100 | 4.815 |
545
+ | 0.4328 | 26200 | 4.7731 |
546
+ | 0.4345 | 26300 | 4.7304 |
547
+ | 0.4361 | 26400 | 4.9838 |
548
+ | 0.4378 | 26500 | 4.7998 |
549
+ | 0.4394 | 26600 | 4.6946 |
550
+ | 0.4411 | 26700 | 4.7755 |
551
+ | 0.4427 | 26800 | 4.7347 |
552
+ | 0.4444 | 26900 | 4.8356 |
553
+ | 0.4461 | 27000 | 4.8642 |
554
+ | 0.4477 | 27100 | 4.9273 |
555
+ | 0.4494 | 27200 | 4.7114 |
556
+ | 0.4510 | 27300 | 4.6088 |
557
+ | 0.4527 | 27400 | 4.5046 |
558
+ | 0.4543 | 27500 | 4.4516 |
559
+ | 0.4560 | 27600 | 4.7491 |
560
+ | 0.4576 | 27700 | 4.943 |
561
+ | 0.4593 | 27800 | 4.877 |
562
+ | 0.4609 | 27900 | 4.6912 |
563
+ | 0.4626 | 28000 | 4.8373 |
564
+ | 0.4642 | 28100 | 5.0152 |
565
+ | 0.4659 | 28200 | 4.7008 |
566
+ | 0.4675 | 28300 | 4.7549 |
567
+ | 0.4692 | 28400 | 4.5287 |
568
+ | 0.4708 | 28500 | 4.8211 |
569
+ | 0.4725 | 28600 | 4.775 |
570
+ | 0.4741 | 28700 | 4.6977 |
571
+ | 0.4758 | 28800 | 4.9122 |
572
+ | 0.4774 | 28900 | 4.9067 |
573
+ | 0.4791 | 29000 | 4.8326 |
574
+ | 0.4807 | 29100 | 4.4536 |
575
+ | 0.4824 | 29200 | 5.0073 |
576
+ | 0.4840 | 29300 | 4.5887 |
577
+ | 0.4857 | 29400 | 4.7829 |
578
+ | 0.4874 | 29500 | 4.6503 |
579
+ | 0.4890 | 29600 | 4.5202 |
580
+ | 0.4907 | 29700 | 4.9086 |
581
+ | 0.4923 | 29800 | 4.743 |
582
+ | 0.4940 | 29900 | 4.7819 |
583
+ | 0.4956 | 30000 | 4.6159 |
584
+ | 0.4973 | 30100 | 5.015 |
585
+ | 0.4989 | 30200 | 4.5351 |
586
+ | 0.5006 | 30300 | 5.0421 |
587
+ | 0.5022 | 30400 | 4.5394 |
588
+ | 0.5039 | 30500 | 4.7516 |
589
+ | 0.5055 | 30600 | 4.9236 |
590
+ | 0.5072 | 30700 | 4.833 |
591
+ | 0.5088 | 30800 | 4.5406 |
592
+ | 0.5105 | 30900 | 4.7325 |
593
+ | 0.5121 | 31000 | 4.6807 |
594
+ | 0.5138 | 31100 | 4.6052 |
595
+ | 0.5154 | 31200 | 4.7922 |
596
+ | 0.5171 | 31300 | 4.5013 |
597
+ | 0.5187 | 31400 | 4.6579 |
598
+ | 0.5204 | 31500 | 4.5152 |
599
+ | 0.5220 | 31600 | 4.535 |
600
+ | 0.5237 | 31700 | 4.4473 |
601
+ | 0.5254 | 31800 | 5.0363 |
602
+ | 0.5270 | 31900 | 4.4849 |
603
+ | 0.5287 | 32000 | 4.6337 |
604
+ | 0.5303 | 32100 | 4.3874 |
605
+ | 0.5320 | 32200 | 4.6289 |
606
+ | 0.5336 | 32300 | 4.5746 |
607
+ | 0.5353 | 32400 | 4.7222 |
608
+ | 0.5369 | 32500 | 4.3974 |
609
+ | 0.5386 | 32600 | 4.8369 |
610
+ | 0.5402 | 32700 | 4.6921 |
611
+ | 0.5419 | 32800 | 4.603 |
612
+ | 0.5435 | 32900 | 4.4542 |
613
+ | 0.5452 | 33000 | 4.6976 |
614
+ | 0.5468 | 33100 | 4.5403 |
615
+ | 0.5485 | 33200 | 4.7398 |
616
+ | 0.5501 | 33300 | 4.9736 |
617
+ | 0.5518 | 33400 | 4.6373 |
618
+ | 0.5534 | 33500 | 4.7195 |
619
+ | 0.5551 | 33600 | 4.4237 |
620
+ | 0.5567 | 33700 | 4.4319 |
621
+ | 0.5584 | 33800 | 4.6785 |
622
+ | 0.5600 | 33900 | 4.6265 |
623
+ | 0.5617 | 34000 | 4.8585 |
624
+ | 0.5633 | 34100 | 4.7605 |
625
+ | 0.5650 | 34200 | 4.5328 |
626
+ | 0.5667 | 34300 | 4.4722 |
627
+ | 0.5683 | 34400 | 4.5651 |
628
+ | 0.5700 | 34500 | 4.5748 |
629
+ | 0.5716 | 34600 | 4.4733 |
630
+ | 0.5733 | 34700 | 4.5675 |
631
+ | 0.5749 | 34800 | 4.7731 |
632
+ | 0.5766 | 34900 | 4.5179 |
633
+ | 0.5782 | 35000 | 4.5138 |
634
+ | 0.5799 | 35100 | 4.4146 |
635
+ | 0.5815 | 35200 | 4.3349 |
636
+ | 0.5832 | 35300 | 4.6789 |
637
+ | 0.5848 | 35400 | 4.6405 |
638
+ | 0.5865 | 35500 | 4.6118 |
639
+ | 0.5881 | 35600 | 4.5165 |
640
+ | 0.5898 | 35700 | 4.5453 |
641
+ | 0.5914 | 35800 | 4.5286 |
642
+ | 0.5931 | 35900 | 4.4041 |
643
+ | 0.5947 | 36000 | 4.5261 |
644
+ | 0.5964 | 36100 | 4.3889 |
645
+ | 0.5980 | 36200 | 4.4186 |
646
+ | 0.5997 | 36300 | 4.7924 |
647
+ | 0.6013 | 36400 | 4.6042 |
648
+ | 0.6030 | 36500 | 4.8725 |
649
+ | 0.6046 | 36600 | 4.509 |
650
+ | 0.6063 | 36700 | 4.3407 |
651
+ | 0.6080 | 36800 | 4.5877 |
652
+ | 0.6096 | 36900 | 4.6656 |
653
+ | 0.6113 | 37000 | 4.405 |
654
+ | 0.6129 | 37100 | 4.3588 |
655
+ | 0.6146 | 37200 | 4.7821 |
656
+ | 0.6162 | 37300 | 4.4748 |
657
+ | 0.6179 | 37400 | 4.6611 |
658
+ | 0.6195 | 37500 | 4.6503 |
659
+ | 0.6212 | 37600 | 4.3817 |
660
+ | 0.6228 | 37700 | 4.3708 |
661
+ | 0.6245 | 37800 | 4.3686 |
662
+ | 0.6261 | 37900 | 4.2679 |
663
+ | 0.6278 | 38000 | 4.4258 |
664
+ | 0.6294 | 38100 | 4.1701 |
665
+ | 0.6311 | 38200 | 4.3627 |
666
+ | 0.6327 | 38300 | 4.4051 |
667
+ | 0.6344 | 38400 | 4.4693 |
668
+ | 0.6360 | 38500 | 4.3831 |
669
+ | 0.6377 | 38600 | 4.0856 |
670
+ | 0.6393 | 38700 | 4.7917 |
671
+ | 0.6410 | 38800 | 4.4803 |
672
+ | 0.6426 | 38900 | 4.7869 |
673
+ | 0.6443 | 39000 | 4.5376 |
674
+ | 0.6460 | 39100 | 4.4829 |
675
+ | 0.6476 | 39200 | 4.7344 |
676
+ | 0.6493 | 39300 | 4.4035 |
677
+ | 0.6509 | 39400 | 4.5464 |
678
+ | 0.6526 | 39500 | 4.3932 |
679
+ | 0.6542 | 39600 | 4.3088 |
680
+ | 0.6559 | 39700 | 4.3844 |
681
+ | 0.6575 | 39800 | 4.4635 |
682
+ | 0.6592 | 39900 | 4.205 |
683
+ | 0.6608 | 40000 | 4.5705 |
684
+ | 0.6625 | 40100 | 4.541 |
685
+ | 0.6641 | 40200 | 4.2803 |
686
+ | 0.6658 | 40300 | 4.4778 |
687
+ | 0.6674 | 40400 | 4.3103 |
688
+ | 0.6691 | 40500 | 4.4215 |
689
+ | 0.6707 | 40600 | 4.1347 |
690
+ | 0.6724 | 40700 | 4.4549 |
691
+ | 0.6740 | 40800 | 4.4641 |
692
+ | 0.6757 | 40900 | 4.6036 |
693
+ | 0.6773 | 41000 | 4.1967 |
694
+ | 0.6790 | 41100 | 4.4231 |
695
+ | 0.6806 | 41200 | 4.4425 |
696
+ | 0.6823 | 41300 | 4.5512 |
697
+ | 0.6839 | 41400 | 4.4586 |
698
+ | 0.6856 | 41500 | 4.4396 |
699
+ | 0.6873 | 41600 | 4.281 |
700
+ | 0.6889 | 41700 | 4.4691 |
701
+ | 0.6906 | 41800 | 4.299 |
702
+ | 0.6922 | 41900 | 4.4199 |
703
+ | 0.6939 | 42000 | 4.325 |
704
+ | 0.6955 | 42100 | 4.8069 |
705
+ | 0.6972 | 42200 | 4.4005 |
706
+ | 0.6988 | 42300 | 4.3462 |
707
+ | 0.7005 | 42400 | 4.4979 |
708
+ | 0.7021 | 42500 | 4.3421 |
709
+ | 0.7038 | 42600 | 4.383 |
710
+ | 0.7054 | 42700 | 4.2318 |
711
+ | 0.7071 | 42800 | 4.4444 |
712
+ | 0.7087 | 42900 | 4.3806 |
713
+ | 0.7104 | 43000 | 4.468 |
714
+ | 0.7120 | 43100 | 4.2501 |
715
+ | 0.7137 | 43200 | 4.3727 |
716
+ | 0.7153 | 43300 | 4.388 |
717
+ | 0.7170 | 43400 | 4.3485 |
718
+ | 0.7186 | 43500 | 4.343 |
719
+ | 0.7203 | 43600 | 4.4982 |
720
+ | 0.7219 | 43700 | 4.3745 |
721
+ | 0.7236 | 43800 | 4.4955 |
722
+ | 0.7252 | 43900 | 4.4546 |
723
+ | 0.7269 | 44000 | 4.2144 |
724
+ | 0.7286 | 44100 | 4.5755 |
725
+ | 0.7302 | 44200 | 4.1601 |
726
+ | 0.7319 | 44300 | 4.2967 |
727
+ | 0.7335 | 44400 | 4.4625 |
728
+ | 0.7352 | 44500 | 4.2364 |
729
+ | 0.7368 | 44600 | 4.5778 |
730
+ | 0.7385 | 44700 | 4.2853 |
731
+ | 0.7401 | 44800 | 4.4863 |
732
+ | 0.7418 | 44900 | 4.1957 |
733
+ | 0.7434 | 45000 | 4.2534 |
734
+ | 0.7451 | 45100 | 4.3133 |
735
+ | 0.7467 | 45200 | 4.5476 |
736
+ | 0.7484 | 45300 | 4.3681 |
737
+ | 0.7500 | 45400 | 4.3973 |
738
+ | 0.7517 | 45500 | 4.1377 |
739
+ | 0.7533 | 45600 | 4.2803 |
740
+ | 0.7550 | 45700 | 4.4228 |
741
+ | 0.7566 | 45800 | 4.0531 |
742
+ | 0.7583 | 45900 | 3.9899 |
743
+ | 0.7599 | 46000 | 4.3483 |
744
+ | 0.7616 | 46100 | 4.1261 |
745
+ | 0.7632 | 46200 | 4.5054 |
746
+ | 0.7649 | 46300 | 4.0876 |
747
+ | 0.7665 | 46400 | 4.3376 |
748
+ | 0.7682 | 46500 | 4.1925 |
749
+ | 0.7699 | 46600 | 4.2739 |
750
+ | 0.7715 | 46700 | 4.3682 |
751
+ | 0.7732 | 46800 | 4.441 |
752
+ | 0.7748 | 46900 | 4.4299 |
753
+ | 0.7765 | 47000 | 4.2043 |
754
+ | 0.7781 | 47100 | 4.3618 |
755
+ | 0.7798 | 47200 | 4.1743 |
756
+ | 0.7814 | 47300 | 4.4187 |
757
+ | 0.7831 | 47400 | 4.2229 |
758
+ | 0.7847 | 47500 | 4.3314 |
759
+ | 0.7864 | 47600 | 4.0925 |
760
+ | 0.7880 | 47700 | 4.0808 |
761
+ | 0.7897 | 47800 | 4.5237 |
762
+ | 0.7913 | 47900 | 4.1168 |
763
+ | 0.7930 | 48000 | 4.2941 |
764
+ | 0.7946 | 48100 | 4.384 |
765
+ | 0.7963 | 48200 | 4.7188 |
766
+ | 0.7979 | 48300 | 4.3229 |
767
+ | 0.7996 | 48400 | 4.2011 |
768
+ | 0.8012 | 48500 | 4.2779 |
769
+ | 0.8029 | 48600 | 4.3589 |
770
+ | 0.8045 | 48700 | 4.2659 |
771
+ | 0.8062 | 48800 | 4.5345 |
772
+ | 0.8079 | 48900 | 3.7909 |
773
+ | 0.8095 | 49000 | 4.4958 |
774
+ | 0.8112 | 49100 | 4.1165 |
775
+ | 0.8128 | 49200 | 4.1192 |
776
+ | 0.8145 | 49300 | 4.5164 |
777
+ | 0.8161 | 49400 | 4.0759 |
778
+ | 0.8178 | 49500 | 4.2756 |
779
+ | 0.8194 | 49600 | 4.6745 |
780
+ | 0.8211 | 49700 | 4.2513 |
781
+ | 0.8227 | 49800 | 4.0886 |
782
+ | 0.8244 | 49900 | 4.2688 |
783
+ | 0.8260 | 50000 | 4.2109 |
784
+ | 0.8277 | 50100 | 3.9525 |
785
+ | 0.8293 | 50200 | 4.0889 |
786
+ | 0.8310 | 50300 | 4.1099 |
787
+ | 0.8326 | 50400 | 3.9672 |
788
+ | 0.8343 | 50500 | 4.2584 |
789
+ | 0.8359 | 50600 | 3.9683 |
790
+ | 0.8376 | 50700 | 4.1123 |
791
+ | 0.8392 | 50800 | 4.0991 |
792
+ | 0.8409 | 50900 | 4.2131 |
793
+ | 0.8425 | 51000 | 3.9701 |
794
+ | 0.8442 | 51100 | 4.6632 |
795
+ | 0.8458 | 51200 | 4.5646 |
796
+ | 0.8475 | 51300 | 4.3518 |
797
+ | 0.8492 | 51400 | 4.0883 |
798
+ | 0.8508 | 51500 | 4.5185 |
799
+ | 0.8525 | 51600 | 4.3088 |
800
+ | 0.8541 | 51700 | 4.2788 |
801
+ | 0.8558 | 51800 | 4.4045 |
802
+ | 0.8574 | 51900 | 4.1641 |
803
+ | 0.8591 | 52000 | 4.4632 |
804
+ | 0.8607 | 52100 | 4.1843 |
805
+ | 0.8624 | 52200 | 4.2139 |
806
+ | 0.8640 | 52300 | 4.2557 |
807
+ | 0.8657 | 52400 | 4.0797 |
808
+ | 0.8673 | 52500 | 4.0446 |
809
+ | 0.8690 | 52600 | 4.4987 |
810
+ | 0.8706 | 52700 | 4.1227 |
811
+ | 0.8723 | 52800 | 4.097 |
812
+ | 0.8739 | 52900 | 4.2207 |
813
+ | 0.8756 | 53000 | 4.1675 |
814
+ | 0.8772 | 53100 | 3.964 |
815
+ | 0.8789 | 53200 | 4.3966 |
816
+ | 0.8805 | 53300 | 4.173 |
817
+ | 0.8822 | 53400 | 4.704 |
818
+ | 0.8838 | 53500 | 4.1042 |
819
+ | 0.8855 | 53600 | 3.9662 |
820
+ | 0.8871 | 53700 | 4.315 |
821
+ | 0.8888 | 53800 | 4.295 |
822
+ | 0.8905 | 53900 | 3.997 |
823
+ | 0.8921 | 54000 | 4.4502 |
824
+ | 0.8938 | 54100 | 4.479 |
825
+ | 0.8954 | 54200 | 4.0461 |
826
+ | 0.8971 | 54300 | 4.2015 |
827
+ | 0.8987 | 54400 | 4.3934 |
828
+ | 0.9004 | 54500 | 4.257 |
829
+ | 0.9020 | 54600 | 4.2889 |
830
+ | 0.9037 | 54700 | 4.3432 |
831
+ | 0.9053 | 54800 | 4.2438 |
832
+ | 0.9070 | 54900 | 3.9952 |
833
+ | 0.9086 | 55000 | 4.1644 |
834
+ | 0.9103 | 55100 | 4.2173 |
835
+ | 0.9119 | 55200 | 4.4476 |
836
+ | 0.9136 | 55300 | 4.3303 |
837
+ | 0.9152 | 55400 | 4.2151 |
838
+ | 0.9169 | 55500 | 4.188 |
839
+ | 0.9185 | 55600 | 4.1958 |
840
+ | 0.9202 | 55700 | 4.305 |
841
+ | 0.9218 | 55800 | 3.8768 |
842
+ | 0.9235 | 55900 | 4.2899 |
843
+ | 0.9251 | 56000 | 4.2238 |
844
+ | 0.9268 | 56100 | 4.4298 |
845
+ | 0.9284 | 56200 | 4.325 |
846
+ | 0.9301 | 56300 | 4.5084 |
847
+ | 0.9318 | 56400 | 4.1923 |
848
+ | 0.9334 | 56500 | 4.258 |
849
+ | 0.9351 | 56600 | 3.9049 |
850
+ | 0.9367 | 56700 | 4.1926 |
851
+ | 0.9384 | 56800 | 3.7358 |
852
+ | 0.9400 | 56900 | 4.1174 |
853
+ | 0.9417 | 57000 | 4.0027 |
854
+ | 0.9433 | 57100 | 3.9343 |
855
+ | 0.9450 | 57200 | 4.1863 |
856
+ | 0.9466 | 57300 | 4.0725 |
857
+ | 0.9483 | 57400 | 4.4933 |
858
+ | 0.9499 | 57500 | 3.9865 |
859
+ | 0.9516 | 57600 | 3.9649 |
860
+ | 0.9532 | 57700 | 4.2387 |
861
+ | 0.9549 | 57800 | 4.2372 |
862
+ | 0.9565 | 57900 | 3.9313 |
863
+ | 0.9582 | 58000 | 4.2078 |
864
+ | 0.9598 | 58100 | 4.3646 |
865
+ | 0.9615 | 58200 | 4.0848 |
866
+ | 0.9631 | 58300 | 4.1224 |
867
+ | 0.9648 | 58400 | 4.2916 |
868
+ | 0.9664 | 58500 | 4.0903 |
869
+ | 0.9681 | 58600 | 3.7786 |
870
+ | 0.9698 | 58700 | 4.038 |
871
+ | 0.9714 | 58800 | 4.1145 |
872
+ | 0.9731 | 58900 | 4.0726 |
873
+ | 0.9747 | 59000 | 3.9669 |
874
+ | 0.9764 | 59100 | 4.1096 |
875
+ | 0.9780 | 59200 | 4.2828 |
876
+ | 0.9797 | 59300 | 4.2423 |
877
+ | 0.9813 | 59400 | 4.0985 |
878
+ | 0.9830 | 59500 | 4.6186 |
879
+ | 0.9846 | 59600 | 4.0591 |
880
+ | 0.9863 | 59700 | 3.7101 |
881
+ | 0.9879 | 59800 | 4.1663 |
882
+ | 0.9896 | 59900 | 3.7786 |
883
+ | 0.9912 | 60000 | 4.3359 |
884
+ | 0.9929 | 60100 | 4.1746 |
885
+ | 0.9945 | 60200 | 4.4696 |
886
+ | 0.9962 | 60300 | 4.1991 |
887
+ | 0.9978 | 60400 | 4.2198 |
888
+ | 0.9995 | 60500 | 4.4005 |
889
+
890
+ </details>
891
+
892
+ ### Framework Versions
893
+ - Python: 3.8.10
894
+ - Sentence Transformers: 3.1.1
895
+ - Transformers: 4.45.2
896
+ - PyTorch: 2.4.1+cu118
897
+ - Accelerate: 1.0.1
898
+ - Datasets: 3.0.1
899
+ - Tokenizers: 0.20.3
900
+
901
+ ## Citation
902
+
903
+ ### BibTeX
904
+
905
+ #### Sentence Transformers
906
+ ```bibtex
907
+ @inproceedings{reimers-2019-sentence-bert,
908
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
909
+ author = "Reimers, Nils and Gurevych, Iryna",
910
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
911
+ month = "11",
912
+ year = "2019",
913
+ publisher = "Association for Computational Linguistics",
914
+ url = "https://arxiv.org/abs/1908.10084",
915
+ }
916
+ ```
917
+
918
+ #### CoSENTLoss
919
+ ```bibtex
920
+ @online{kexuefm-8847,
921
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
922
+ author={Su Jianlin},
923
+ year={2022},
924
+ month={Jan},
925
+ url={https://kexue.fm/archives/8847},
926
+ }
927
+ ```
928
+
929
+ <!--
930
+ ## Glossary
931
+
932
+ *Clearly define terms in order to be accessible across audiences.*
933
+ -->
934
+
935
+ <!--
936
+ ## Model Card Authors
937
+
938
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
939
+ -->
940
+
941
+ <!--
942
+ ## Model Card Contact
943
+
944
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
945
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9185548ee2404622ffea6847ea3c99c81c4f3061ff6a332e608643329f50493c
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff