youssefkhalil320 commited on
Commit
39b01cb
·
verified ·
1 Parent(s): 7f0b5a6

Upload folder using huggingface_hub

Browse files
checkpoint-1000/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1000/README.md ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - sentence-transformers
10
+ - sentence-similarity
11
+ - feature-extraction
12
+ - generated_from_trainer
13
+ - dataset_size:7747936
14
+ - loss:CoSENTLoss
15
+ widget:
16
+ - source_sentence: mango cake cream cake sponge cake gateau mango gateau cream gateau
17
+ mango sponge cake cream sponge cake mango cream cake mango cream sponge cake mango
18
+ flavored sponge cake layers cream filling decorated with fresh mango slices topped
19
+ with whipped cream serves 10 people mango cream cake sponge cake gateau mango
20
+ gateau with cream filling whipped cream mango cake mango cream sponge cake for
21
+ 10 people
22
+ sentences:
23
+ - vegan dessert
24
+ - oxidized ring
25
+ - cola lip gloss
26
+ - source_sentence: double breasted blouse
27
+ sentences:
28
+ - brushed jersey sweatshirt
29
+ - comfort facial tissues
30
+ - round neck sweatshirt
31
+ - source_sentence: casual shirt
32
+ sentences:
33
+ - adjustable string top
34
+ - foldable spare backpack
35
+ - spring blossom scent shower gel
36
+ - source_sentence: sweet chilli mozzarella stick
37
+ sentences:
38
+ - fragrance free facial cream
39
+ - outdoor basket
40
+ - cobb dressing salad
41
+ - source_sentence: appetizer onion ring
42
+ sentences:
43
+ - high quality sports bra
44
+ - swimmer burkini
45
+ - nuttella pizza
46
+ ---
47
+
48
+ # all-MiniLM-L6-v10-pair_score
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
57
+ - **Maximum Sequence Length:** 256 tokens
58
+ - **Output Dimensionality:** 384 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ - **Language:** en
62
+ - **License:** apache-2.0
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ (2): Normalize()
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("sentence_transformers_model_id")
96
+ # Run inference
97
+ sentences = [
98
+ 'appetizer onion ring',
99
+ 'nuttella pizza',
100
+ 'high quality sports bra',
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 384]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities.shape)
109
+ # [3, 3]
110
+ ```
111
+
112
+ <!--
113
+ ### Direct Usage (Transformers)
114
+
115
+ <details><summary>Click to see the direct usage in Transformers</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Downstream Usage (Sentence Transformers)
122
+
123
+ You can finetune this model on your own dataset.
124
+
125
+ <details><summary>Click to expand</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Hyperparameters
151
+ #### Non-Default Hyperparameters
152
+
153
+ - `eval_strategy`: steps
154
+ - `per_device_train_batch_size`: 128
155
+ - `per_device_eval_batch_size`: 128
156
+ - `learning_rate`: 2e-05
157
+ - `num_train_epochs`: 1
158
+ - `warmup_ratio`: 0.1
159
+ - `fp16`: True
160
+
161
+ #### All Hyperparameters
162
+ <details><summary>Click to expand</summary>
163
+
164
+ - `overwrite_output_dir`: False
165
+ - `do_predict`: False
166
+ - `eval_strategy`: steps
167
+ - `prediction_loss_only`: True
168
+ - `per_device_train_batch_size`: 128
169
+ - `per_device_eval_batch_size`: 128
170
+ - `per_gpu_train_batch_size`: None
171
+ - `per_gpu_eval_batch_size`: None
172
+ - `gradient_accumulation_steps`: 1
173
+ - `eval_accumulation_steps`: None
174
+ - `torch_empty_cache_steps`: None
175
+ - `learning_rate`: 2e-05
176
+ - `weight_decay`: 0.0
177
+ - `adam_beta1`: 0.9
178
+ - `adam_beta2`: 0.999
179
+ - `adam_epsilon`: 1e-08
180
+ - `max_grad_norm`: 1.0
181
+ - `num_train_epochs`: 1
182
+ - `max_steps`: -1
183
+ - `lr_scheduler_type`: linear
184
+ - `lr_scheduler_kwargs`: {}
185
+ - `warmup_ratio`: 0.1
186
+ - `warmup_steps`: 0
187
+ - `log_level`: passive
188
+ - `log_level_replica`: warning
189
+ - `log_on_each_node`: True
190
+ - `logging_nan_inf_filter`: True
191
+ - `save_safetensors`: True
192
+ - `save_on_each_node`: False
193
+ - `save_only_model`: False
194
+ - `restore_callback_states_from_checkpoint`: False
195
+ - `no_cuda`: False
196
+ - `use_cpu`: False
197
+ - `use_mps_device`: False
198
+ - `seed`: 42
199
+ - `data_seed`: None
200
+ - `jit_mode_eval`: False
201
+ - `use_ipex`: False
202
+ - `bf16`: False
203
+ - `fp16`: True
204
+ - `fp16_opt_level`: O1
205
+ - `half_precision_backend`: auto
206
+ - `bf16_full_eval`: False
207
+ - `fp16_full_eval`: False
208
+ - `tf32`: None
209
+ - `local_rank`: 0
210
+ - `ddp_backend`: None
211
+ - `tpu_num_cores`: None
212
+ - `tpu_metrics_debug`: False
213
+ - `debug`: []
214
+ - `dataloader_drop_last`: False
215
+ - `dataloader_num_workers`: 0
216
+ - `dataloader_prefetch_factor`: None
217
+ - `past_index`: -1
218
+ - `disable_tqdm`: False
219
+ - `remove_unused_columns`: True
220
+ - `label_names`: None
221
+ - `load_best_model_at_end`: False
222
+ - `ignore_data_skip`: False
223
+ - `fsdp`: []
224
+ - `fsdp_min_num_params`: 0
225
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
226
+ - `fsdp_transformer_layer_cls_to_wrap`: None
227
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
228
+ - `deepspeed`: None
229
+ - `label_smoothing_factor`: 0.0
230
+ - `optim`: adamw_torch
231
+ - `optim_args`: None
232
+ - `adafactor`: False
233
+ - `group_by_length`: False
234
+ - `length_column_name`: length
235
+ - `ddp_find_unused_parameters`: None
236
+ - `ddp_bucket_cap_mb`: None
237
+ - `ddp_broadcast_buffers`: False
238
+ - `dataloader_pin_memory`: True
239
+ - `dataloader_persistent_workers`: False
240
+ - `skip_memory_metrics`: True
241
+ - `use_legacy_prediction_loop`: False
242
+ - `push_to_hub`: False
243
+ - `resume_from_checkpoint`: None
244
+ - `hub_model_id`: None
245
+ - `hub_strategy`: every_save
246
+ - `hub_private_repo`: False
247
+ - `hub_always_push`: False
248
+ - `gradient_checkpointing`: False
249
+ - `gradient_checkpointing_kwargs`: None
250
+ - `include_inputs_for_metrics`: False
251
+ - `eval_do_concat_batches`: True
252
+ - `fp16_backend`: auto
253
+ - `push_to_hub_model_id`: None
254
+ - `push_to_hub_organization`: None
255
+ - `mp_parameters`:
256
+ - `auto_find_batch_size`: False
257
+ - `full_determinism`: False
258
+ - `torchdynamo`: None
259
+ - `ray_scope`: last
260
+ - `ddp_timeout`: 1800
261
+ - `torch_compile`: False
262
+ - `torch_compile_backend`: None
263
+ - `torch_compile_mode`: None
264
+ - `dispatch_batches`: None
265
+ - `split_batches`: None
266
+ - `include_tokens_per_second`: False
267
+ - `include_num_input_tokens_seen`: False
268
+ - `neftune_noise_alpha`: None
269
+ - `optim_target_modules`: None
270
+ - `batch_eval_metrics`: False
271
+ - `eval_on_start`: False
272
+ - `use_liger_kernel`: False
273
+ - `eval_use_gather_object`: False
274
+ - `batch_sampler`: batch_sampler
275
+ - `multi_dataset_batch_sampler`: proportional
276
+
277
+ </details>
278
+
279
+ ### Training Logs
280
+ | Epoch | Step | Training Loss |
281
+ |:------:|:----:|:-------------:|
282
+ | 0.0017 | 100 | 13.3171 |
283
+ | 0.0033 | 200 | 12.9799 |
284
+ | 0.0050 | 300 | 12.5133 |
285
+ | 0.0066 | 400 | 11.9388 |
286
+ | 0.0083 | 500 | 11.0616 |
287
+ | 0.0099 | 600 | 10.2712 |
288
+ | 0.0116 | 700 | 9.5253 |
289
+ | 0.0132 | 800 | 8.7706 |
290
+ | 0.0149 | 900 | 8.4333 |
291
+ | 0.0165 | 1000 | 8.0902 |
292
+
293
+
294
+ ### Framework Versions
295
+ - Python: 3.8.10
296
+ - Sentence Transformers: 3.1.1
297
+ - Transformers: 4.45.2
298
+ - PyTorch: 2.4.1+cu118
299
+ - Accelerate: 1.0.1
300
+ - Datasets: 3.0.1
301
+ - Tokenizers: 0.20.3
302
+
303
+ ## Citation
304
+
305
+ ### BibTeX
306
+
307
+ #### Sentence Transformers
308
+ ```bibtex
309
+ @inproceedings{reimers-2019-sentence-bert,
310
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
311
+ author = "Reimers, Nils and Gurevych, Iryna",
312
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
313
+ month = "11",
314
+ year = "2019",
315
+ publisher = "Association for Computational Linguistics",
316
+ url = "https://arxiv.org/abs/1908.10084",
317
+ }
318
+ ```
319
+
320
+ #### CoSENTLoss
321
+ ```bibtex
322
+ @online{kexuefm-8847,
323
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
324
+ author={Su Jianlin},
325
+ year={2022},
326
+ month={Jan},
327
+ url={https://kexue.fm/archives/8847},
328
+ }
329
+ ```
330
+
331
+ <!--
332
+ ## Glossary
333
+
334
+ *Clearly define terms in order to be accessible across audiences.*
335
+ -->
336
+
337
+ <!--
338
+ ## Model Card Authors
339
+
340
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
341
+ -->
342
+
343
+ <!--
344
+ ## Model Card Contact
345
+
346
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
347
+ -->
checkpoint-1000/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-1000/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-1000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0c61473f121bae8de01be221394daf314c4b2896f9fd87f11530039e38294c0
3
+ size 90864192
checkpoint-1000/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d925f0d626bb7c7d2b50c2f6f0f3c8deed3e3a9437968a404b67d5478a6dacf4
3
+ size 180607738
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b45107fe5bc9725b23c0e2a876876b22bba2f3354aa7fb9e7fc4d88200ea921
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1b1d616f6d43856cd26dcd2f0ebee51b08cc0fa07e5ca35003ed62b716564e9
3
+ size 1064
checkpoint-1000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-1000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.016520460590441263,
5
+ "eval_steps": 200000,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0016520460590441263,
13
+ "grad_norm": 51.92022705078125,
14
+ "learning_rate": 3.2044928972580115e-07,
15
+ "loss": 13.3171,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.0033040921180882525,
20
+ "grad_norm": 68.25243377685547,
21
+ "learning_rate": 6.508093822266271e-07,
22
+ "loss": 12.9799,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.004956138177132379,
27
+ "grad_norm": 69.47785186767578,
28
+ "learning_rate": 9.811694747274531e-07,
29
+ "loss": 12.5133,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.006608184236176505,
34
+ "grad_norm": 73.07315063476562,
35
+ "learning_rate": 1.311529567228279e-06,
36
+ "loss": 11.9388,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.008260230295220631,
41
+ "grad_norm": 82.68733215332031,
42
+ "learning_rate": 1.6418896597291048e-06,
43
+ "loss": 11.0616,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.009912276354264758,
48
+ "grad_norm": 57.61735534667969,
49
+ "learning_rate": 1.972249752229931e-06,
50
+ "loss": 10.2712,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.011564322413308884,
55
+ "grad_norm": 44.42943572998047,
56
+ "learning_rate": 2.302609844730757e-06,
57
+ "loss": 9.5253,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.01321636847235301,
62
+ "grad_norm": 27.03646469116211,
63
+ "learning_rate": 2.6329699372315828e-06,
64
+ "loss": 8.7706,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.014868414531397135,
69
+ "grad_norm": 15.231706619262695,
70
+ "learning_rate": 2.9633300297324087e-06,
71
+ "loss": 8.4333,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 0.016520460590441263,
76
+ "grad_norm": 14.189949035644531,
77
+ "learning_rate": 3.2936901222332346e-06,
78
+ "loss": 8.0902,
79
+ "step": 1000
80
+ }
81
+ ],
82
+ "logging_steps": 100,
83
+ "max_steps": 60531,
84
+ "num_input_tokens_seen": 0,
85
+ "num_train_epochs": 1,
86
+ "save_steps": 500,
87
+ "stateful_callbacks": {
88
+ "TrainerControl": {
89
+ "args": {
90
+ "should_epoch_stop": false,
91
+ "should_evaluate": false,
92
+ "should_log": false,
93
+ "should_save": true,
94
+ "should_training_stop": false
95
+ },
96
+ "attributes": {}
97
+ }
98
+ },
99
+ "total_flos": 0.0,
100
+ "train_batch_size": 128,
101
+ "trial_name": null,
102
+ "trial_params": null
103
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c43f2c3436c58c3ffe8b725b59722a1cebff56668f235b3b5de22faa6c318991
3
+ size 5496
checkpoint-1000/vocab.txt ADDED
The diff for this file is too large to render. See raw diff