Upload folder using huggingface_hub
Browse files- README.md +95 -123
- config.json +1 -1
- config_sentence_transformers.json +2 -2
- model.safetensors +1 -1
- optimizer.pt +2 -2
- rng_state.pth +2 -2
- scheduler.pt +2 -2
- special_tokens_map.json +2 -2
- tokenizer_config.json +0 -7
- trainer_state.json +377 -232
- training_args.bin +2 -2
README.md
CHANGED
@@ -4,46 +4,45 @@ tags:
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
-
- dataset_size:
|
8 |
- loss:MultipleNegativesSymmetricRankingLoss
|
9 |
base_model: microsoft/mpnet-base
|
10 |
widget:
|
11 |
-
- source_sentence:
|
12 |
-
Your Life by Dr. CK Bray
|
13 |
sentences:
|
14 |
-
- Books on
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
- Books on Self-Help for Women
|
16 |
-
|
17 |
-
|
18 |
-
Radden Keefe'
|
19 |
sentences:
|
|
|
20 |
- Books on Personal Development
|
21 |
-
- Books on
|
22 |
-
|
23 |
-
|
24 |
-
sentences:
|
25 |
-
- Books on Self-Help
|
26 |
-
- Books on Social Skills
|
27 |
-
- Books on Emotional Labor
|
28 |
-
- source_sentence: 'The Law of Attraction: How to Attract Money, Love, and Happiness
|
29 |
-
by David R. Hooper'
|
30 |
sentences:
|
31 |
-
- Books on
|
32 |
-
- Books on
|
33 |
-
- Books on
|
34 |
-
- source_sentence: '
|
35 |
-
by Chris Bailey'
|
36 |
sentences:
|
37 |
-
- Books on
|
38 |
-
- Books on
|
39 |
-
- Books on
|
40 |
pipeline_tag: sentence-similarity
|
41 |
library_name: sentence-transformers
|
42 |
---
|
43 |
|
44 |
# SentenceTransformer based on microsoft/mpnet-base
|
45 |
|
46 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the
|
47 |
|
48 |
## Model Details
|
49 |
|
@@ -54,7 +53,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [m
|
|
54 |
- **Output Dimensionality:** 768 dimensions
|
55 |
- **Similarity Function:** Cosine Similarity
|
56 |
- **Training Dataset:**
|
57 |
-
-
|
58 |
<!-- - **Language:** Unknown -->
|
59 |
<!-- - **License:** Unknown -->
|
60 |
|
@@ -88,12 +87,12 @@ Then you can load this model and run inference.
|
|
88 |
from sentence_transformers import SentenceTransformer
|
89 |
|
90 |
# Download from the 🤗 Hub
|
91 |
-
model = SentenceTransformer("
|
92 |
# Run inference
|
93 |
sentences = [
|
94 |
-
'
|
95 |
-
'Books on
|
96 |
-
'Books on
|
97 |
]
|
98 |
embeddings = model.encode(sentences)
|
99 |
print(embeddings.shape)
|
@@ -145,22 +144,22 @@ You can finetune this model on your own dataset.
|
|
145 |
|
146 |
### Training Dataset
|
147 |
|
148 |
-
####
|
149 |
|
150 |
-
* Dataset:
|
151 |
-
* Size: 10,
|
152 |
* Columns: <code>anchor</code> and <code>positive</code>
|
153 |
* Approximate statistics based on the first 1000 samples:
|
154 |
-
| | anchor
|
155 |
-
|
156 |
-
| type | string
|
157 |
-
| details | <ul><li>min:
|
158 |
* Samples:
|
159 |
-
| anchor
|
160 |
-
|
161 |
-
| <code>
|
162 |
-
| <code>
|
163 |
-
| <code>
|
164 |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
165 |
```json
|
166 |
{
|
@@ -171,22 +170,22 @@ You can finetune this model on your own dataset.
|
|
171 |
|
172 |
### Evaluation Dataset
|
173 |
|
174 |
-
####
|
175 |
|
176 |
-
* Dataset:
|
177 |
-
* Size: 5,
|
178 |
* Columns: <code>anchor</code> and <code>positive</code>
|
179 |
* Approximate statistics based on the first 1000 samples:
|
180 |
-
| | anchor
|
181 |
-
|
182 |
-
| type | string
|
183 |
-
| details | <ul><li>min:
|
184 |
* Samples:
|
185 |
-
| anchor
|
186 |
-
|
187 |
-
| <code>
|
188 |
-
| <code>
|
189 |
-
| <code>
|
190 |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
191 |
```json
|
192 |
{
|
@@ -198,11 +197,11 @@ You can finetune this model on your own dataset.
|
|
198 |
### Training Hyperparameters
|
199 |
#### Non-Default Hyperparameters
|
200 |
|
201 |
-
- `eval_strategy`:
|
202 |
- `per_device_train_batch_size`: 16
|
203 |
- `per_device_eval_batch_size`: 16
|
204 |
- `learning_rate`: 2e-05
|
205 |
-
- `num_train_epochs`:
|
206 |
- `warmup_ratio`: 0.1
|
207 |
|
208 |
#### All Hyperparameters
|
@@ -210,7 +209,7 @@ You can finetune this model on your own dataset.
|
|
210 |
|
211 |
- `overwrite_output_dir`: False
|
212 |
- `do_predict`: False
|
213 |
-
- `eval_strategy`:
|
214 |
- `prediction_loss_only`: True
|
215 |
- `per_device_train_batch_size`: 16
|
216 |
- `per_device_eval_batch_size`: 16
|
@@ -225,7 +224,7 @@ You can finetune this model on your own dataset.
|
|
225 |
- `adam_beta2`: 0.999
|
226 |
- `adam_epsilon`: 1e-08
|
227 |
- `max_grad_norm`: 1.0
|
228 |
-
- `num_train_epochs`:
|
229 |
- `max_steps`: -1
|
230 |
- `lr_scheduler_type`: linear
|
231 |
- `lr_scheduler_kwargs`: {}
|
@@ -325,76 +324,49 @@ You can finetune this model on your own dataset.
|
|
325 |
</details>
|
326 |
|
327 |
### Training Logs
|
328 |
-
| Epoch | Step | Training Loss |
|
329 |
-
|
330 |
-
| 0.
|
331 |
-
| 0.
|
332 |
-
| 0.
|
333 |
-
|
|
334 |
-
|
|
335 |
-
|
|
336 |
-
|
|
337 |
-
|
|
338 |
-
|
|
339 |
-
|
|
340 |
-
|
|
341 |
-
|
|
342 |
-
|
|
343 |
-
|
|
344 |
-
|
|
345 |
-
|
|
346 |
-
|
|
347 |
-
|
|
348 |
-
|
|
349 |
-
|
|
350 |
-
|
|
351 |
-
|
|
352 |
-
|
|
353 |
-
|
|
354 |
-
|
|
355 |
-
|
|
356 |
-
|
|
357 |
-
|
|
358 |
-
|
|
359 |
-
|
|
360 |
-
|
|
361 |
-
|
|
362 |
-
|
|
363 |
-
| 4.4978 | 3000 | 1.3011 | - |
|
364 |
-
| 4.6477 | 3100 | 1.3175 | - |
|
365 |
-
| 4.7976 | 3200 | 1.3553 | - |
|
366 |
-
| 4.9475 | 3300 | 1.3157 | - |
|
367 |
-
| 5.0 | 3335 | - | 1.6061 |
|
368 |
-
| 5.0975 | 3400 | 1.2754 | - |
|
369 |
-
| 5.2474 | 3500 | 1.2315 | - |
|
370 |
-
| 5.3973 | 3600 | 1.2454 | - |
|
371 |
-
| 5.5472 | 3700 | 1.2441 | - |
|
372 |
-
| 5.6972 | 3800 | 1.266 | - |
|
373 |
-
| 5.8471 | 3900 | 1.2304 | - |
|
374 |
-
| 5.9970 | 4000 | 1.2717 | - |
|
375 |
-
| 6.0 | 4002 | - | 1.6100 |
|
376 |
-
| 6.1469 | 4100 | 1.1706 | - |
|
377 |
-
| 6.2969 | 4200 | 1.2203 | - |
|
378 |
-
| 6.4468 | 4300 | 1.1441 | - |
|
379 |
-
| 6.5967 | 4400 | 1.1895 | - |
|
380 |
-
| 6.7466 | 4500 | 1.176 | - |
|
381 |
-
| 6.8966 | 4600 | 1.1903 | - |
|
382 |
-
| 7.0 | 4669 | - | 1.6341 |
|
383 |
-
| 7.0465 | 4700 | 1.2028 | - |
|
384 |
-
| 7.1964 | 4800 | 1.1416 | - |
|
385 |
-
| 7.3463 | 4900 | 1.1405 | - |
|
386 |
-
| 7.4963 | 5000 | 1.1454 | - |
|
387 |
-
| 7.6462 | 5100 | 1.1217 | - |
|
388 |
-
| 7.7961 | 5200 | 1.1682 | - |
|
389 |
-
| 7.9460 | 5300 | 1.1582 | - |
|
390 |
|
391 |
|
392 |
### Framework Versions
|
393 |
- Python: 3.10.12
|
394 |
- Sentence Transformers: 4.1.0
|
395 |
-
- Transformers: 4.
|
396 |
-
- PyTorch: 2.
|
397 |
-
- Accelerate: 1.
|
398 |
- Datasets: 3.6.0
|
399 |
- Tokenizers: 0.21.1
|
400 |
|
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
+
- dataset_size:10635
|
8 |
- loss:MultipleNegativesSymmetricRankingLoss
|
9 |
base_model: microsoft/mpnet-base
|
10 |
widget:
|
11 |
+
- source_sentence: '12 Rules For Life: An Antidote to Chaos by Jordan B. Peterson'
|
|
|
12 |
sentences:
|
13 |
+
- Books on Investing
|
14 |
+
- Books on Resilience
|
15 |
+
- Books on Motivational
|
16 |
+
- source_sentence: 'Get the Guy: Learn Secrets of the Male Mind to Find the Man You
|
17 |
+
Want and the Love You Deserve by Matthew Hussey'
|
18 |
+
sentences:
|
19 |
+
- Books on Complexity
|
20 |
+
- Books on Decision Making
|
21 |
- Books on Self-Help for Women
|
22 |
+
- source_sentence: The Magic of Tiny Business (You Don’t Have to Go Big to Make a
|
23 |
+
Great Living) by Sharon Rowe
|
|
|
24 |
sentences:
|
25 |
+
- Books on Vegetarianism
|
26 |
- Books on Personal Development
|
27 |
+
- Books on Emotions
|
28 |
+
- source_sentence: 'The Dorito Effect: The Surprising New Truth About Food and Flavor
|
29 |
+
by Mark Schatzker'
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
sentences:
|
31 |
+
- Books on Skincare
|
32 |
+
- Books on Work-Life Balance
|
33 |
+
- Books on Problem Solving
|
34 |
+
- source_sentence: '12 Rules For Life: An Antidote to Chaos by Jordan B. Peterson'
|
|
|
35 |
sentences:
|
36 |
+
- Books on Psychology
|
37 |
+
- Books on Positive Thinking
|
38 |
+
- Books on Investing
|
39 |
pipeline_tag: sentence-similarity
|
40 |
library_name: sentence-transformers
|
41 |
---
|
42 |
|
43 |
# SentenceTransformer based on microsoft/mpnet-base
|
44 |
|
45 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
46 |
|
47 |
## Model Details
|
48 |
|
|
|
53 |
- **Output Dimensionality:** 768 dimensions
|
54 |
- **Similarity Function:** Cosine Similarity
|
55 |
- **Training Dataset:**
|
56 |
+
- train
|
57 |
<!-- - **Language:** Unknown -->
|
58 |
<!-- - **License:** Unknown -->
|
59 |
|
|
|
87 |
from sentence_transformers import SentenceTransformer
|
88 |
|
89 |
# Download from the 🤗 Hub
|
90 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
91 |
# Run inference
|
92 |
sentences = [
|
93 |
+
'12 Rules For Life: An Antidote to Chaos by Jordan B. Peterson',
|
94 |
+
'Books on Psychology',
|
95 |
+
'Books on Positive Thinking',
|
96 |
]
|
97 |
embeddings = model.encode(sentences)
|
98 |
print(embeddings.shape)
|
|
|
144 |
|
145 |
### Training Dataset
|
146 |
|
147 |
+
#### train
|
148 |
|
149 |
+
* Dataset: train
|
150 |
+
* Size: 10,635 training samples
|
151 |
* Columns: <code>anchor</code> and <code>positive</code>
|
152 |
* Approximate statistics based on the first 1000 samples:
|
153 |
+
| | anchor | positive |
|
154 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
155 |
+
| type | string | string |
|
156 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 24.11 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.89 tokens</li><li>max: 10 tokens</li></ul> |
|
157 |
* Samples:
|
158 |
+
| anchor | positive |
|
159 |
+
|:-------------------------------------------------------------------------------------------------------------------|:-----------------------------------|
|
160 |
+
| <code>The Life-Changing Magic of Tidying Up: The Japanese Art of Decluttering and Organizing by Marie Kondō</code> | <code>Books on Organization</code> |
|
161 |
+
| <code>The Life-Changing Magic of Tidying Up: The Japanese Art of Decluttering and Organizing by Marie Kondō</code> | <code>Books on Minimalism</code> |
|
162 |
+
| <code>The Life-Changing Magic of Tidying Up: The Japanese Art of Decluttering and Organizing by Marie Kondō</code> | <code>Books on Japanese Art</code> |
|
163 |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
164 |
```json
|
165 |
{
|
|
|
170 |
|
171 |
### Evaluation Dataset
|
172 |
|
173 |
+
#### train
|
174 |
|
175 |
+
* Dataset: train
|
176 |
+
* Size: 5,359 evaluation samples
|
177 |
* Columns: <code>anchor</code> and <code>positive</code>
|
178 |
* Approximate statistics based on the first 1000 samples:
|
179 |
+
| | anchor | positive |
|
180 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
181 |
+
| type | string | string |
|
182 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 22.0 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 5.85 tokens</li><li>max: 13 tokens</li></ul> |
|
183 |
* Samples:
|
184 |
+
| anchor | positive |
|
185 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------|
|
186 |
+
| <code>12 Rules For Life: An Antidote to Chaos by Jordan B. Peterson</code> | <code>Books on Psychology</code> |
|
187 |
+
| <code>12 Rules For Life: An Antidote to Chaos by Jordan B. Peterson</code> | <code>Books on Self-Help</code> |
|
188 |
+
| <code>12 Rules For Life: An Antidote to Chaos by Jordan B. Peterson</code> | <code>Books on Personal Development</code> |
|
189 |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
190 |
```json
|
191 |
{
|
|
|
197 |
### Training Hyperparameters
|
198 |
#### Non-Default Hyperparameters
|
199 |
|
200 |
+
- `eval_strategy`: steps
|
201 |
- `per_device_train_batch_size`: 16
|
202 |
- `per_device_eval_batch_size`: 16
|
203 |
- `learning_rate`: 2e-05
|
204 |
+
- `num_train_epochs`: 10
|
205 |
- `warmup_ratio`: 0.1
|
206 |
|
207 |
#### All Hyperparameters
|
|
|
209 |
|
210 |
- `overwrite_output_dir`: False
|
211 |
- `do_predict`: False
|
212 |
+
- `eval_strategy`: steps
|
213 |
- `prediction_loss_only`: True
|
214 |
- `per_device_train_batch_size`: 16
|
215 |
- `per_device_eval_batch_size`: 16
|
|
|
224 |
- `adam_beta2`: 0.999
|
225 |
- `adam_epsilon`: 1e-08
|
226 |
- `max_grad_norm`: 1.0
|
227 |
+
- `num_train_epochs`: 10
|
228 |
- `max_steps`: -1
|
229 |
- `lr_scheduler_type`: linear
|
230 |
- `lr_scheduler_kwargs`: {}
|
|
|
324 |
</details>
|
325 |
|
326 |
### Training Logs
|
327 |
+
| Epoch | Step | Training Loss | train loss |
|
328 |
+
|:------:|:----:|:-------------:|:----------:|
|
329 |
+
| 0.3008 | 200 | 2.8113 | 2.0799 |
|
330 |
+
| 0.6015 | 400 | 2.0877 | 1.9239 |
|
331 |
+
| 0.9023 | 600 | 1.9258 | 1.8882 |
|
332 |
+
| 1.2030 | 800 | 1.7382 | 1.8684 |
|
333 |
+
| 1.5038 | 1000 | 1.7232 | 1.8226 |
|
334 |
+
| 1.8045 | 1200 | 1.6814 | 1.8167 |
|
335 |
+
| 2.1053 | 1400 | 1.5764 | 1.8133 |
|
336 |
+
| 2.4060 | 1600 | 1.5333 | 1.7898 |
|
337 |
+
| 2.7068 | 1800 | 1.5216 | 1.7782 |
|
338 |
+
| 3.0075 | 2000 | 1.4966 | 1.7663 |
|
339 |
+
| 3.3083 | 2200 | 1.4325 | 1.7642 |
|
340 |
+
| 3.6090 | 2400 | 1.4043 | 1.7956 |
|
341 |
+
| 3.9098 | 2600 | 1.4212 | 1.7609 |
|
342 |
+
| 4.2105 | 2800 | 1.3808 | 1.7611 |
|
343 |
+
| 4.5113 | 3000 | 1.35 | 1.7671 |
|
344 |
+
| 4.8120 | 3200 | 1.3644 | 1.7517 |
|
345 |
+
| 5.1128 | 3400 | 1.304 | 1.7712 |
|
346 |
+
| 5.4135 | 3600 | 1.288 | 1.7820 |
|
347 |
+
| 5.7143 | 3800 | 1.3051 | 1.7699 |
|
348 |
+
| 6.0150 | 4000 | 1.2803 | 1.7678 |
|
349 |
+
| 6.3158 | 4200 | 1.2026 | 1.7812 |
|
350 |
+
| 6.6165 | 4400 | 1.2602 | 1.7846 |
|
351 |
+
| 6.9173 | 4600 | 1.2392 | 1.7733 |
|
352 |
+
| 7.2180 | 4800 | 1.2088 | 1.7745 |
|
353 |
+
| 7.5188 | 5000 | 1.1791 | 1.7867 |
|
354 |
+
| 7.8195 | 5200 | 1.1946 | 1.7779 |
|
355 |
+
| 8.1203 | 5400 | 1.1617 | 1.7931 |
|
356 |
+
| 8.4211 | 5600 | 1.1495 | 1.7911 |
|
357 |
+
| 8.7218 | 5800 | 1.1635 | 1.7949 |
|
358 |
+
| 9.0226 | 6000 | 1.1324 | 1.7962 |
|
359 |
+
| 9.3233 | 6200 | 1.1304 | 1.8035 |
|
360 |
+
| 9.6241 | 6400 | 1.1126 | 1.8056 |
|
361 |
+
| 9.9248 | 6600 | 1.0986 | 1.8062 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
|
364 |
### Framework Versions
|
365 |
- Python: 3.10.12
|
366 |
- Sentence Transformers: 4.1.0
|
367 |
+
- Transformers: 4.52.4
|
368 |
+
- PyTorch: 2.6.0+cu124
|
369 |
+
- Accelerate: 1.8.1
|
370 |
- Datasets: 3.6.0
|
371 |
- Tokenizers: 0.21.1
|
372 |
|
config.json
CHANGED
@@ -18,6 +18,6 @@
|
|
18 |
"pad_token_id": 1,
|
19 |
"relative_attention_num_buckets": 32,
|
20 |
"torch_dtype": "float32",
|
21 |
-
"transformers_version": "4.
|
22 |
"vocab_size": 30527
|
23 |
}
|
|
|
18 |
"pad_token_id": 1,
|
19 |
"relative_attention_num_buckets": 32,
|
20 |
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.52.4",
|
22 |
"vocab_size": 30527
|
23 |
}
|
config_sentence_transformers.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "4.1.0",
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.52.4",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:070b8e311a59229e3d1911753c8912809c4b6c99f9cf43c46f1c8ac5dfe915e0
|
3 |
size 437967672
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:636d83f75ef3b6379d2de1380140e9e6db0862aa30c2f61df168fa48a5f11f94
|
3 |
+
size 871331770
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:784b875c2b86372c41eaa4d7d8efaa50c3c0a99edec1ace8f8b943345f97b54f
|
3 |
+
size 14244
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45b9b94e19b7c7a2fcd96ee21ab65fa9d6c05333276c875f55a40f3bff2d6f6f
|
3 |
+
size 1064
|
special_tokens_map.json
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"cls_token": {
|
10 |
"content": "<s>",
|
11 |
"lstrip": false,
|
12 |
-
"normalized":
|
13 |
"rstrip": false,
|
14 |
"single_word": false
|
15 |
},
|
@@ -37,7 +37,7 @@
|
|
37 |
"sep_token": {
|
38 |
"content": "</s>",
|
39 |
"lstrip": false,
|
40 |
-
"normalized":
|
41 |
"rstrip": false,
|
42 |
"single_word": false
|
43 |
},
|
|
|
9 |
"cls_token": {
|
10 |
"content": "<s>",
|
11 |
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
"rstrip": false,
|
14 |
"single_word": false
|
15 |
},
|
|
|
37 |
"sep_token": {
|
38 |
"content": "</s>",
|
39 |
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
"rstrip": false,
|
42 |
"single_word": false
|
43 |
},
|
tokenizer_config.json
CHANGED
@@ -56,18 +56,11 @@
|
|
56 |
"eos_token": "</s>",
|
57 |
"extra_special_tokens": {},
|
58 |
"mask_token": "<mask>",
|
59 |
-
"max_length": 512,
|
60 |
"model_max_length": 512,
|
61 |
-
"pad_to_multiple_of": null,
|
62 |
"pad_token": "<pad>",
|
63 |
-
"pad_token_type_id": 0,
|
64 |
-
"padding_side": "right",
|
65 |
"sep_token": "</s>",
|
66 |
-
"stride": 0,
|
67 |
"strip_accents": null,
|
68 |
"tokenize_chinese_chars": true,
|
69 |
"tokenizer_class": "MPNetTokenizer",
|
70 |
-
"truncation_side": "right",
|
71 |
-
"truncation_strategy": "longest_first",
|
72 |
"unk_token": "[UNK]"
|
73 |
}
|
|
|
56 |
"eos_token": "</s>",
|
57 |
"extra_special_tokens": {},
|
58 |
"mask_token": "<mask>",
|
|
|
59 |
"model_max_length": 512,
|
|
|
60 |
"pad_token": "<pad>",
|
|
|
|
|
61 |
"sep_token": "</s>",
|
|
|
62 |
"strip_accents": null,
|
63 |
"tokenize_chinese_chars": true,
|
64 |
"tokenizer_class": "MPNetTokenizer",
|
|
|
|
|
65 |
"unk_token": "[UNK]"
|
66 |
}
|
trainer_state.json
CHANGED
@@ -2,369 +2,514 @@
|
|
2 |
"best_global_step": null,
|
3 |
"best_metric": null,
|
4 |
"best_model_checkpoint": null,
|
5 |
-
"epoch":
|
6 |
-
"eval_steps":
|
7 |
-
"global_step":
|
8 |
"is_hyper_param_search": false,
|
9 |
"is_local_process_zero": true,
|
10 |
"is_world_process_zero": true,
|
11 |
"log_history": [
|
12 |
{
|
13 |
-
"epoch": 0.
|
14 |
-
"grad_norm":
|
15 |
-
"learning_rate":
|
16 |
-
"loss":
|
17 |
-
"step":
|
18 |
},
|
19 |
{
|
20 |
-
"epoch": 0.
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
|
|
24 |
"step": 200
|
25 |
},
|
26 |
{
|
27 |
-
"epoch": 0.
|
28 |
-
"grad_norm":
|
29 |
-
"learning_rate": 1.
|
30 |
-
"loss": 2.
|
31 |
-
"step":
|
32 |
},
|
33 |
{
|
34 |
-
"epoch": 0.
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
|
|
38 |
"step": 400
|
39 |
},
|
40 |
{
|
41 |
-
"epoch": 0.
|
42 |
-
"grad_norm":
|
43 |
-
"learning_rate": 1.
|
44 |
-
"loss": 1.
|
45 |
-
"step":
|
46 |
},
|
47 |
{
|
48 |
-
"epoch": 0.
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
|
|
52 |
"step": 600
|
53 |
},
|
54 |
{
|
55 |
-
"epoch":
|
56 |
-
"grad_norm":
|
57 |
-
"learning_rate": 1.
|
58 |
-
"loss": 1.
|
59 |
-
"step":
|
60 |
},
|
61 |
{
|
62 |
-
"epoch":
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
|
|
66 |
"step": 800
|
67 |
},
|
68 |
{
|
69 |
-
"epoch":
|
70 |
-
"grad_norm":
|
71 |
-
"learning_rate": 1.
|
72 |
-
"loss": 1.
|
73 |
-
"step":
|
74 |
},
|
75 |
{
|
76 |
-
"epoch":
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"
|
|
|
80 |
"step": 1000
|
81 |
},
|
82 |
{
|
83 |
-
"epoch": 1.
|
84 |
-
"grad_norm": 11.
|
85 |
-
"learning_rate": 1.
|
86 |
-
"loss": 1.
|
87 |
-
"step":
|
88 |
},
|
89 |
{
|
90 |
-
"epoch": 1.
|
91 |
-
"
|
92 |
-
"
|
93 |
-
"
|
|
|
94 |
"step": 1200
|
95 |
},
|
96 |
{
|
97 |
-
"epoch":
|
98 |
-
"grad_norm":
|
99 |
-
"learning_rate": 1.
|
100 |
-
"loss": 1.
|
101 |
-
"step":
|
102 |
},
|
103 |
{
|
104 |
-
"epoch":
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
|
|
108 |
"step": 1400
|
109 |
},
|
110 |
{
|
111 |
-
"epoch":
|
112 |
-
"grad_norm":
|
113 |
-
"learning_rate": 1.
|
114 |
-
"loss": 1.
|
115 |
-
"step":
|
116 |
},
|
117 |
{
|
118 |
-
"epoch":
|
119 |
-
"
|
120 |
-
"
|
121 |
-
"
|
|
|
122 |
"step": 1600
|
123 |
},
|
124 |
{
|
125 |
-
"epoch":
|
126 |
-
"grad_norm":
|
127 |
-
"learning_rate": 1.
|
128 |
-
"loss": 1.
|
129 |
-
"step":
|
130 |
},
|
131 |
{
|
132 |
-
"epoch":
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
|
|
136 |
"step": 1800
|
137 |
},
|
138 |
{
|
139 |
-
"epoch":
|
140 |
-
"grad_norm":
|
141 |
-
"learning_rate": 1.
|
142 |
-
"loss": 1.
|
143 |
-
"step":
|
144 |
},
|
145 |
{
|
146 |
-
"epoch":
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
|
|
150 |
"step": 2000
|
151 |
},
|
152 |
{
|
153 |
-
"epoch":
|
154 |
-
"grad_norm":
|
155 |
-
"learning_rate": 1.
|
156 |
-
"loss": 1.
|
157 |
-
"step":
|
158 |
},
|
159 |
{
|
160 |
-
"epoch":
|
161 |
-
"
|
162 |
-
"
|
163 |
-
"
|
|
|
164 |
"step": 2200
|
165 |
},
|
166 |
{
|
167 |
-
"epoch":
|
168 |
-
"grad_norm":
|
169 |
-
"learning_rate": 1.
|
170 |
-
"loss": 1.
|
171 |
-
"step":
|
172 |
},
|
173 |
{
|
174 |
-
"epoch":
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
|
|
178 |
"step": 2400
|
179 |
},
|
180 |
{
|
181 |
-
"epoch":
|
182 |
-
"grad_norm":
|
183 |
-
"learning_rate": 1.
|
184 |
-
"loss": 1.
|
185 |
-
"step":
|
186 |
},
|
187 |
{
|
188 |
-
"epoch":
|
189 |
-
"
|
190 |
-
"
|
191 |
-
"
|
|
|
192 |
"step": 2600
|
193 |
},
|
194 |
{
|
195 |
-
"epoch":
|
196 |
-
"grad_norm":
|
197 |
-
"learning_rate": 1.
|
198 |
-
"loss": 1.
|
199 |
-
"step":
|
200 |
},
|
201 |
{
|
202 |
-
"epoch":
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
|
|
206 |
"step": 2800
|
207 |
},
|
208 |
{
|
209 |
-
"epoch":
|
210 |
-
"grad_norm":
|
211 |
-
"learning_rate":
|
212 |
-
"loss": 1.
|
213 |
-
"step":
|
214 |
},
|
215 |
{
|
216 |
-
"epoch":
|
217 |
-
"
|
218 |
-
"
|
219 |
-
"
|
|
|
220 |
"step": 3000
|
221 |
},
|
222 |
{
|
223 |
-
"epoch":
|
224 |
-
"grad_norm":
|
225 |
-
"learning_rate":
|
226 |
-
"loss": 1.
|
227 |
-
"step":
|
228 |
},
|
229 |
{
|
230 |
-
"epoch":
|
231 |
-
"
|
232 |
-
"
|
233 |
-
"
|
|
|
234 |
"step": 3200
|
235 |
},
|
236 |
{
|
237 |
-
"epoch":
|
238 |
-
"grad_norm":
|
239 |
-
"learning_rate":
|
240 |
-
"loss": 1.
|
241 |
-
"step":
|
242 |
},
|
243 |
{
|
244 |
-
"epoch":
|
245 |
-
"
|
246 |
-
"
|
247 |
-
"
|
|
|
248 |
"step": 3400
|
249 |
},
|
250 |
{
|
251 |
-
"epoch":
|
252 |
-
"grad_norm":
|
253 |
-
"learning_rate":
|
254 |
-
"loss": 1.
|
255 |
-
"step":
|
256 |
},
|
257 |
{
|
258 |
-
"epoch":
|
259 |
-
"
|
260 |
-
"
|
261 |
-
"
|
|
|
262 |
"step": 3600
|
263 |
},
|
264 |
{
|
265 |
-
"epoch":
|
266 |
-
"grad_norm":
|
267 |
-
"learning_rate":
|
268 |
-
"loss": 1.
|
269 |
-
"step":
|
270 |
},
|
271 |
{
|
272 |
-
"epoch":
|
273 |
-
"
|
274 |
-
"
|
275 |
-
"
|
|
|
276 |
"step": 3800
|
277 |
},
|
278 |
{
|
279 |
-
"epoch":
|
280 |
-
"grad_norm":
|
281 |
-
"learning_rate":
|
282 |
-
"loss": 1.
|
283 |
-
"step":
|
284 |
},
|
285 |
{
|
286 |
-
"epoch":
|
287 |
-
"
|
288 |
-
"
|
289 |
-
"
|
|
|
290 |
"step": 4000
|
291 |
},
|
292 |
{
|
293 |
-
"epoch":
|
294 |
-
"grad_norm": 14.
|
295 |
-
"learning_rate":
|
296 |
-
"loss": 1.
|
297 |
-
"step":
|
298 |
},
|
299 |
{
|
300 |
-
"epoch":
|
301 |
-
"
|
302 |
-
"
|
303 |
-
"
|
|
|
304 |
"step": 4200
|
305 |
},
|
306 |
{
|
307 |
-
"epoch":
|
308 |
-
"grad_norm":
|
309 |
-
"learning_rate":
|
310 |
-
"loss": 1.
|
311 |
-
"step":
|
312 |
},
|
313 |
{
|
314 |
-
"epoch":
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
|
|
318 |
"step": 4400
|
319 |
},
|
320 |
{
|
321 |
-
"epoch":
|
322 |
-
"grad_norm":
|
323 |
-
"learning_rate":
|
324 |
-
"loss": 1.
|
325 |
-
"step":
|
326 |
},
|
327 |
{
|
328 |
-
"epoch":
|
329 |
-
"
|
330 |
-
"
|
331 |
-
"
|
|
|
332 |
"step": 4600
|
333 |
},
|
334 |
{
|
335 |
-
"epoch":
|
336 |
-
"grad_norm":
|
337 |
-
"learning_rate":
|
338 |
-
"loss": 1.
|
339 |
-
"step":
|
340 |
},
|
341 |
{
|
342 |
-
"epoch":
|
343 |
-
"
|
344 |
-
"
|
345 |
-
"
|
|
|
346 |
"step": 4800
|
347 |
},
|
348 |
{
|
349 |
-
"epoch":
|
350 |
-
"grad_norm": 12.
|
351 |
-
"learning_rate":
|
352 |
-
"loss": 1.
|
353 |
-
"step":
|
354 |
},
|
355 |
{
|
356 |
-
"epoch":
|
357 |
-
"
|
358 |
-
"
|
359 |
-
"
|
|
|
360 |
"step": 5000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
}
|
362 |
],
|
363 |
-
"logging_steps":
|
364 |
-
"max_steps":
|
365 |
"num_input_tokens_seen": 0,
|
366 |
-
"num_train_epochs":
|
367 |
-
"save_steps":
|
368 |
"stateful_callbacks": {
|
369 |
"TrainerControl": {
|
370 |
"args": {
|
|
|
2 |
"best_global_step": null,
|
3 |
"best_metric": null,
|
4 |
"best_model_checkpoint": null,
|
5 |
+
"epoch": 10.0,
|
6 |
+
"eval_steps": 200,
|
7 |
+
"global_step": 6650,
|
8 |
"is_hyper_param_search": false,
|
9 |
"is_local_process_zero": true,
|
10 |
"is_world_process_zero": true,
|
11 |
"log_history": [
|
12 |
{
|
13 |
+
"epoch": 0.3007518796992481,
|
14 |
+
"grad_norm": 23.491586685180664,
|
15 |
+
"learning_rate": 5.984962406015038e-06,
|
16 |
+
"loss": 2.8113,
|
17 |
+
"step": 200
|
18 |
},
|
19 |
{
|
20 |
+
"epoch": 0.3007518796992481,
|
21 |
+
"eval_train_loss": 2.0799365043640137,
|
22 |
+
"eval_train_runtime": 5.0075,
|
23 |
+
"eval_train_samples_per_second": 1070.204,
|
24 |
+
"eval_train_steps_per_second": 66.9,
|
25 |
"step": 200
|
26 |
},
|
27 |
{
|
28 |
+
"epoch": 0.6015037593984962,
|
29 |
+
"grad_norm": 34.29732131958008,
|
30 |
+
"learning_rate": 1.2e-05,
|
31 |
+
"loss": 2.0877,
|
32 |
+
"step": 400
|
33 |
},
|
34 |
{
|
35 |
+
"epoch": 0.6015037593984962,
|
36 |
+
"eval_train_loss": 1.923947811126709,
|
37 |
+
"eval_train_runtime": 5.0362,
|
38 |
+
"eval_train_samples_per_second": 1064.098,
|
39 |
+
"eval_train_steps_per_second": 66.519,
|
40 |
"step": 400
|
41 |
},
|
42 |
{
|
43 |
+
"epoch": 0.9022556390977443,
|
44 |
+
"grad_norm": 38.32964324951172,
|
45 |
+
"learning_rate": 1.8015037593984962e-05,
|
46 |
+
"loss": 1.9258,
|
47 |
+
"step": 600
|
48 |
},
|
49 |
{
|
50 |
+
"epoch": 0.9022556390977443,
|
51 |
+
"eval_train_loss": 1.888200283050537,
|
52 |
+
"eval_train_runtime": 4.9999,
|
53 |
+
"eval_train_samples_per_second": 1071.817,
|
54 |
+
"eval_train_steps_per_second": 67.001,
|
55 |
"step": 600
|
56 |
},
|
57 |
{
|
58 |
+
"epoch": 1.2030075187969924,
|
59 |
+
"grad_norm": 15.528878211975098,
|
60 |
+
"learning_rate": 1.9552213868003343e-05,
|
61 |
+
"loss": 1.7382,
|
62 |
+
"step": 800
|
63 |
},
|
64 |
{
|
65 |
+
"epoch": 1.2030075187969924,
|
66 |
+
"eval_train_loss": 1.8683608770370483,
|
67 |
+
"eval_train_runtime": 5.0138,
|
68 |
+
"eval_train_samples_per_second": 1068.861,
|
69 |
+
"eval_train_steps_per_second": 66.816,
|
70 |
"step": 800
|
71 |
},
|
72 |
{
|
73 |
+
"epoch": 1.5037593984962405,
|
74 |
+
"grad_norm": 13.27901554107666,
|
75 |
+
"learning_rate": 1.8883876357560568e-05,
|
76 |
+
"loss": 1.7232,
|
77 |
+
"step": 1000
|
78 |
},
|
79 |
{
|
80 |
+
"epoch": 1.5037593984962405,
|
81 |
+
"eval_train_loss": 1.8225561380386353,
|
82 |
+
"eval_train_runtime": 5.0119,
|
83 |
+
"eval_train_samples_per_second": 1069.261,
|
84 |
+
"eval_train_steps_per_second": 66.841,
|
85 |
"step": 1000
|
86 |
},
|
87 |
{
|
88 |
+
"epoch": 1.8045112781954886,
|
89 |
+
"grad_norm": 11.53130054473877,
|
90 |
+
"learning_rate": 1.8215538847117796e-05,
|
91 |
+
"loss": 1.6814,
|
92 |
+
"step": 1200
|
93 |
},
|
94 |
{
|
95 |
+
"epoch": 1.8045112781954886,
|
96 |
+
"eval_train_loss": 1.8166730403900146,
|
97 |
+
"eval_train_runtime": 5.0134,
|
98 |
+
"eval_train_samples_per_second": 1068.945,
|
99 |
+
"eval_train_steps_per_second": 66.822,
|
100 |
"step": 1200
|
101 |
},
|
102 |
{
|
103 |
+
"epoch": 2.1052631578947367,
|
104 |
+
"grad_norm": 14.417011260986328,
|
105 |
+
"learning_rate": 1.754720133667502e-05,
|
106 |
+
"loss": 1.5764,
|
107 |
+
"step": 1400
|
108 |
},
|
109 |
{
|
110 |
+
"epoch": 2.1052631578947367,
|
111 |
+
"eval_train_loss": 1.8132838010787964,
|
112 |
+
"eval_train_runtime": 5.0144,
|
113 |
+
"eval_train_samples_per_second": 1068.73,
|
114 |
+
"eval_train_steps_per_second": 66.808,
|
115 |
"step": 1400
|
116 |
},
|
117 |
{
|
118 |
+
"epoch": 2.406015037593985,
|
119 |
+
"grad_norm": 11.700883865356445,
|
120 |
+
"learning_rate": 1.6878863826232248e-05,
|
121 |
+
"loss": 1.5333,
|
122 |
+
"step": 1600
|
123 |
},
|
124 |
{
|
125 |
+
"epoch": 2.406015037593985,
|
126 |
+
"eval_train_loss": 1.7898207902908325,
|
127 |
+
"eval_train_runtime": 5.0228,
|
128 |
+
"eval_train_samples_per_second": 1066.927,
|
129 |
+
"eval_train_steps_per_second": 66.695,
|
130 |
"step": 1600
|
131 |
},
|
132 |
{
|
133 |
+
"epoch": 2.706766917293233,
|
134 |
+
"grad_norm": 13.112250328063965,
|
135 |
+
"learning_rate": 1.6210526315789473e-05,
|
136 |
+
"loss": 1.5216,
|
137 |
+
"step": 1800
|
138 |
},
|
139 |
{
|
140 |
+
"epoch": 2.706766917293233,
|
141 |
+
"eval_train_loss": 1.7781648635864258,
|
142 |
+
"eval_train_runtime": 5.0052,
|
143 |
+
"eval_train_samples_per_second": 1070.687,
|
144 |
+
"eval_train_steps_per_second": 66.93,
|
145 |
"step": 1800
|
146 |
},
|
147 |
{
|
148 |
+
"epoch": 3.007518796992481,
|
149 |
+
"grad_norm": 11.557127952575684,
|
150 |
+
"learning_rate": 1.55421888053467e-05,
|
151 |
+
"loss": 1.4966,
|
152 |
+
"step": 2000
|
153 |
},
|
154 |
{
|
155 |
+
"epoch": 3.007518796992481,
|
156 |
+
"eval_train_loss": 1.7662715911865234,
|
157 |
+
"eval_train_runtime": 5.0354,
|
158 |
+
"eval_train_samples_per_second": 1064.268,
|
159 |
+
"eval_train_steps_per_second": 66.529,
|
160 |
"step": 2000
|
161 |
},
|
162 |
{
|
163 |
+
"epoch": 3.308270676691729,
|
164 |
+
"grad_norm": 10.65110969543457,
|
165 |
+
"learning_rate": 1.4873851294903927e-05,
|
166 |
+
"loss": 1.4325,
|
167 |
+
"step": 2200
|
168 |
},
|
169 |
{
|
170 |
+
"epoch": 3.308270676691729,
|
171 |
+
"eval_train_loss": 1.764186143875122,
|
172 |
+
"eval_train_runtime": 5.0269,
|
173 |
+
"eval_train_samples_per_second": 1066.066,
|
174 |
+
"eval_train_steps_per_second": 66.642,
|
175 |
"step": 2200
|
176 |
},
|
177 |
{
|
178 |
+
"epoch": 3.6090225563909772,
|
179 |
+
"grad_norm": 11.466296195983887,
|
180 |
+
"learning_rate": 1.4205513784461153e-05,
|
181 |
+
"loss": 1.4043,
|
182 |
+
"step": 2400
|
183 |
},
|
184 |
{
|
185 |
+
"epoch": 3.6090225563909772,
|
186 |
+
"eval_train_loss": 1.7955785989761353,
|
187 |
+
"eval_train_runtime": 5.06,
|
188 |
+
"eval_train_samples_per_second": 1059.097,
|
189 |
+
"eval_train_steps_per_second": 66.206,
|
190 |
"step": 2400
|
191 |
},
|
192 |
{
|
193 |
+
"epoch": 3.909774436090226,
|
194 |
+
"grad_norm": 9.564383506774902,
|
195 |
+
"learning_rate": 1.353717627401838e-05,
|
196 |
+
"loss": 1.4212,
|
197 |
+
"step": 2600
|
198 |
},
|
199 |
{
|
200 |
+
"epoch": 3.909774436090226,
|
201 |
+
"eval_train_loss": 1.7609018087387085,
|
202 |
+
"eval_train_runtime": 5.0402,
|
203 |
+
"eval_train_samples_per_second": 1063.247,
|
204 |
+
"eval_train_steps_per_second": 66.465,
|
205 |
"step": 2600
|
206 |
},
|
207 |
{
|
208 |
+
"epoch": 4.2105263157894735,
|
209 |
+
"grad_norm": 12.078660011291504,
|
210 |
+
"learning_rate": 1.2868838763575606e-05,
|
211 |
+
"loss": 1.3808,
|
212 |
+
"step": 2800
|
213 |
},
|
214 |
{
|
215 |
+
"epoch": 4.2105263157894735,
|
216 |
+
"eval_train_loss": 1.7610782384872437,
|
217 |
+
"eval_train_runtime": 5.0859,
|
218 |
+
"eval_train_samples_per_second": 1053.692,
|
219 |
+
"eval_train_steps_per_second": 65.868,
|
220 |
"step": 2800
|
221 |
},
|
222 |
{
|
223 |
+
"epoch": 4.511278195488722,
|
224 |
+
"grad_norm": 10.561222076416016,
|
225 |
+
"learning_rate": 1.2200501253132832e-05,
|
226 |
+
"loss": 1.35,
|
227 |
+
"step": 3000
|
228 |
},
|
229 |
{
|
230 |
+
"epoch": 4.511278195488722,
|
231 |
+
"eval_train_loss": 1.7670680284500122,
|
232 |
+
"eval_train_runtime": 5.0558,
|
233 |
+
"eval_train_samples_per_second": 1059.976,
|
234 |
+
"eval_train_steps_per_second": 66.261,
|
235 |
"step": 3000
|
236 |
},
|
237 |
{
|
238 |
+
"epoch": 4.81203007518797,
|
239 |
+
"grad_norm": 14.785975456237793,
|
240 |
+
"learning_rate": 1.1532163742690059e-05,
|
241 |
+
"loss": 1.3644,
|
242 |
+
"step": 3200
|
243 |
},
|
244 |
{
|
245 |
+
"epoch": 4.81203007518797,
|
246 |
+
"eval_train_loss": 1.751652479171753,
|
247 |
+
"eval_train_runtime": 5.0835,
|
248 |
+
"eval_train_samples_per_second": 1054.196,
|
249 |
+
"eval_train_steps_per_second": 65.9,
|
250 |
"step": 3200
|
251 |
},
|
252 |
{
|
253 |
+
"epoch": 5.112781954887218,
|
254 |
+
"grad_norm": 10.927189826965332,
|
255 |
+
"learning_rate": 1.0863826232247285e-05,
|
256 |
+
"loss": 1.304,
|
257 |
+
"step": 3400
|
258 |
},
|
259 |
{
|
260 |
+
"epoch": 5.112781954887218,
|
261 |
+
"eval_train_loss": 1.7712498903274536,
|
262 |
+
"eval_train_runtime": 5.0673,
|
263 |
+
"eval_train_samples_per_second": 1057.559,
|
264 |
+
"eval_train_steps_per_second": 66.11,
|
265 |
"step": 3400
|
266 |
},
|
267 |
{
|
268 |
+
"epoch": 5.413533834586466,
|
269 |
+
"grad_norm": 14.33267879486084,
|
270 |
+
"learning_rate": 1.0195488721804511e-05,
|
271 |
+
"loss": 1.288,
|
272 |
+
"step": 3600
|
273 |
},
|
274 |
{
|
275 |
+
"epoch": 5.413533834586466,
|
276 |
+
"eval_train_loss": 1.7820113897323608,
|
277 |
+
"eval_train_runtime": 5.086,
|
278 |
+
"eval_train_samples_per_second": 1053.672,
|
279 |
+
"eval_train_steps_per_second": 65.867,
|
280 |
"step": 3600
|
281 |
},
|
282 |
{
|
283 |
+
"epoch": 5.714285714285714,
|
284 |
+
"grad_norm": 11.89034366607666,
|
285 |
+
"learning_rate": 9.527151211361737e-06,
|
286 |
+
"loss": 1.3051,
|
287 |
+
"step": 3800
|
288 |
},
|
289 |
{
|
290 |
+
"epoch": 5.714285714285714,
|
291 |
+
"eval_train_loss": 1.7699248790740967,
|
292 |
+
"eval_train_runtime": 5.1253,
|
293 |
+
"eval_train_samples_per_second": 1045.605,
|
294 |
+
"eval_train_steps_per_second": 65.363,
|
295 |
"step": 3800
|
296 |
},
|
297 |
{
|
298 |
+
"epoch": 6.015037593984962,
|
299 |
+
"grad_norm": 10.595609664916992,
|
300 |
+
"learning_rate": 8.858813700918964e-06,
|
301 |
+
"loss": 1.2803,
|
302 |
+
"step": 4000
|
303 |
},
|
304 |
{
|
305 |
+
"epoch": 6.015037593984962,
|
306 |
+
"eval_train_loss": 1.7678076028823853,
|
307 |
+
"eval_train_runtime": 5.1035,
|
308 |
+
"eval_train_samples_per_second": 1050.07,
|
309 |
+
"eval_train_steps_per_second": 65.642,
|
310 |
"step": 4000
|
311 |
},
|
312 |
{
|
313 |
+
"epoch": 6.315789473684211,
|
314 |
+
"grad_norm": 14.781892776489258,
|
315 |
+
"learning_rate": 8.190476190476192e-06,
|
316 |
+
"loss": 1.2026,
|
317 |
+
"step": 4200
|
318 |
},
|
319 |
{
|
320 |
+
"epoch": 6.315789473684211,
|
321 |
+
"eval_train_loss": 1.7812011241912842,
|
322 |
+
"eval_train_runtime": 5.1217,
|
323 |
+
"eval_train_samples_per_second": 1046.331,
|
324 |
+
"eval_train_steps_per_second": 65.408,
|
325 |
"step": 4200
|
326 |
},
|
327 |
{
|
328 |
+
"epoch": 6.616541353383458,
|
329 |
+
"grad_norm": 11.254812240600586,
|
330 |
+
"learning_rate": 7.522138680033417e-06,
|
331 |
+
"loss": 1.2602,
|
332 |
+
"step": 4400
|
333 |
},
|
334 |
{
|
335 |
+
"epoch": 6.616541353383458,
|
336 |
+
"eval_train_loss": 1.7846208810806274,
|
337 |
+
"eval_train_runtime": 5.1259,
|
338 |
+
"eval_train_samples_per_second": 1045.481,
|
339 |
+
"eval_train_steps_per_second": 65.355,
|
340 |
"step": 4400
|
341 |
},
|
342 |
{
|
343 |
+
"epoch": 6.917293233082707,
|
344 |
+
"grad_norm": 9.643959999084473,
|
345 |
+
"learning_rate": 6.8538011695906435e-06,
|
346 |
+
"loss": 1.2392,
|
347 |
+
"step": 4600
|
348 |
},
|
349 |
{
|
350 |
+
"epoch": 6.917293233082707,
|
351 |
+
"eval_train_loss": 1.7733409404754639,
|
352 |
+
"eval_train_runtime": 5.1326,
|
353 |
+
"eval_train_samples_per_second": 1044.114,
|
354 |
+
"eval_train_steps_per_second": 65.269,
|
355 |
"step": 4600
|
356 |
},
|
357 |
{
|
358 |
+
"epoch": 7.2180451127819545,
|
359 |
+
"grad_norm": 12.258922576904297,
|
360 |
+
"learning_rate": 6.18546365914787e-06,
|
361 |
+
"loss": 1.2088,
|
362 |
+
"step": 4800
|
363 |
},
|
364 |
{
|
365 |
+
"epoch": 7.2180451127819545,
|
366 |
+
"eval_train_loss": 1.7745392322540283,
|
367 |
+
"eval_train_runtime": 5.1493,
|
368 |
+
"eval_train_samples_per_second": 1040.714,
|
369 |
+
"eval_train_steps_per_second": 65.057,
|
370 |
"step": 4800
|
371 |
},
|
372 |
{
|
373 |
+
"epoch": 7.518796992481203,
|
374 |
+
"grad_norm": 12.351716041564941,
|
375 |
+
"learning_rate": 5.517126148705096e-06,
|
376 |
+
"loss": 1.1791,
|
377 |
+
"step": 5000
|
378 |
},
|
379 |
{
|
380 |
+
"epoch": 7.518796992481203,
|
381 |
+
"eval_train_loss": 1.7866636514663696,
|
382 |
+
"eval_train_runtime": 5.144,
|
383 |
+
"eval_train_samples_per_second": 1041.787,
|
384 |
+
"eval_train_steps_per_second": 65.124,
|
385 |
"step": 5000
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 7.819548872180452,
|
389 |
+
"grad_norm": 15.052789688110352,
|
390 |
+
"learning_rate": 4.8487886382623224e-06,
|
391 |
+
"loss": 1.1946,
|
392 |
+
"step": 5200
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 7.819548872180452,
|
396 |
+
"eval_train_loss": 1.7778518199920654,
|
397 |
+
"eval_train_runtime": 5.1357,
|
398 |
+
"eval_train_samples_per_second": 1043.481,
|
399 |
+
"eval_train_steps_per_second": 65.23,
|
400 |
+
"step": 5200
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"epoch": 8.1203007518797,
|
404 |
+
"grad_norm": 8.957300186157227,
|
405 |
+
"learning_rate": 4.18045112781955e-06,
|
406 |
+
"loss": 1.1617,
|
407 |
+
"step": 5400
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 8.1203007518797,
|
411 |
+
"eval_train_loss": 1.7931042909622192,
|
412 |
+
"eval_train_runtime": 5.1877,
|
413 |
+
"eval_train_samples_per_second": 1033.016,
|
414 |
+
"eval_train_steps_per_second": 64.576,
|
415 |
+
"step": 5400
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 8.421052631578947,
|
419 |
+
"grad_norm": 13.89137077331543,
|
420 |
+
"learning_rate": 3.5121136173767755e-06,
|
421 |
+
"loss": 1.1495,
|
422 |
+
"step": 5600
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 8.421052631578947,
|
426 |
+
"eval_train_loss": 1.791070818901062,
|
427 |
+
"eval_train_runtime": 5.1363,
|
428 |
+
"eval_train_samples_per_second": 1043.352,
|
429 |
+
"eval_train_steps_per_second": 65.222,
|
430 |
+
"step": 5600
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 8.721804511278195,
|
434 |
+
"grad_norm": 11.32971477508545,
|
435 |
+
"learning_rate": 2.8437761069340018e-06,
|
436 |
+
"loss": 1.1635,
|
437 |
+
"step": 5800
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 8.721804511278195,
|
441 |
+
"eval_train_loss": 1.794918417930603,
|
442 |
+
"eval_train_runtime": 5.1728,
|
443 |
+
"eval_train_samples_per_second": 1035.991,
|
444 |
+
"eval_train_steps_per_second": 64.762,
|
445 |
+
"step": 5800
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 9.022556390977444,
|
449 |
+
"grad_norm": 13.075417518615723,
|
450 |
+
"learning_rate": 2.1754385964912285e-06,
|
451 |
+
"loss": 1.1324,
|
452 |
+
"step": 6000
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 9.022556390977444,
|
456 |
+
"eval_train_loss": 1.7962439060211182,
|
457 |
+
"eval_train_runtime": 5.1942,
|
458 |
+
"eval_train_samples_per_second": 1031.737,
|
459 |
+
"eval_train_steps_per_second": 64.496,
|
460 |
+
"step": 6000
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 9.323308270676693,
|
464 |
+
"grad_norm": 12.90481948852539,
|
465 |
+
"learning_rate": 1.5071010860484548e-06,
|
466 |
+
"loss": 1.1304,
|
467 |
+
"step": 6200
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 9.323308270676693,
|
471 |
+
"eval_train_loss": 1.8035305738449097,
|
472 |
+
"eval_train_runtime": 5.1397,
|
473 |
+
"eval_train_samples_per_second": 1042.671,
|
474 |
+
"eval_train_steps_per_second": 65.179,
|
475 |
+
"step": 6200
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 9.62406015037594,
|
479 |
+
"grad_norm": 12.501527786254883,
|
480 |
+
"learning_rate": 8.38763575605681e-07,
|
481 |
+
"loss": 1.1126,
|
482 |
+
"step": 6400
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 9.62406015037594,
|
486 |
+
"eval_train_loss": 1.8056447505950928,
|
487 |
+
"eval_train_runtime": 5.1771,
|
488 |
+
"eval_train_samples_per_second": 1035.144,
|
489 |
+
"eval_train_steps_per_second": 64.709,
|
490 |
+
"step": 6400
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 9.924812030075188,
|
494 |
+
"grad_norm": 10.318084716796875,
|
495 |
+
"learning_rate": 1.704260651629073e-07,
|
496 |
+
"loss": 1.0986,
|
497 |
+
"step": 6600
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 9.924812030075188,
|
501 |
+
"eval_train_loss": 1.806175947189331,
|
502 |
+
"eval_train_runtime": 5.1696,
|
503 |
+
"eval_train_samples_per_second": 1036.634,
|
504 |
+
"eval_train_steps_per_second": 64.802,
|
505 |
+
"step": 6600
|
506 |
}
|
507 |
],
|
508 |
+
"logging_steps": 200,
|
509 |
+
"max_steps": 6650,
|
510 |
"num_input_tokens_seen": 0,
|
511 |
+
"num_train_epochs": 10,
|
512 |
+
"save_steps": 3000,
|
513 |
"stateful_callbacks": {
|
514 |
"TrainerControl": {
|
515 |
"args": {
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5426350813d7892767af2be085b90ee8f4228e448896c2b7304612735ddb7b6
|
3 |
+
size 5496
|