yuriivoievidka commited on
Commit
a27fef8
·
verified ·
1 Parent(s): 2e3ebf5

Upload 15 files

Browse files
README.md CHANGED
@@ -1,3 +1,423 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:16002
8
+ - loss:MultipleNegativesSymmetricRankingLoss
9
+ base_model: microsoft/mpnet-base
10
+ widget:
11
+ - source_sentence: F*CK Him! — Nice Girls Always Finish Single — “A guide for sassy
12
+ women who want to get back in control of their love life” by Brian Nox
13
+ sentences:
14
+ - Books on Innovation
15
+ - Books on Dating
16
+ - Books on Entrepreneurship
17
+ - source_sentence: It Doesn't Have to Be Crazy at Work by Jason Fried, David Heinemeier
18
+ Hansson
19
+ sentences:
20
+ - Books on Psychology
21
+ - Books on Communication
22
+ - Books on Business Strategy
23
+ - source_sentence: Harvard Business Review Guide to Finance Basics for Managers by
24
+ Harvard Business School Press
25
+ sentences:
26
+ - Books on Management
27
+ - Books on Sociology
28
+ - Books on Feng Shui
29
+ - source_sentence: 'Captivate: The Science of Succeeding with People by Vanessa Van
30
+ Edwards'
31
+ sentences:
32
+ - Books on Management
33
+ - Books on Leadership
34
+ - Books on Ethical Dilemmas
35
+ - source_sentence: 'Who: The A Method for Hiring by Geoff Smart and Randy Street'
36
+ sentences:
37
+ - Books on Habits
38
+ - Books on Communication
39
+ - Books on Artificial Intelligence
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ ---
43
+
44
+ # SentenceTransformer based on microsoft/mpnet-base
45
+
46
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** Sentence Transformer
52
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
53
+ - **Maximum Sequence Length:** 512 tokens
54
+ - **Output Dimensionality:** 768 dimensions
55
+ - **Similarity Function:** Cosine Similarity
56
+ - **Training Dataset:**
57
+ - csv
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
+
69
+ ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
72
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ )
74
+ ```
75
+
76
+ ## Usage
77
+
78
+ ### Direct Usage (Sentence Transformers)
79
+
80
+ First install the Sentence Transformers library:
81
+
82
+ ```bash
83
+ pip install -U sentence-transformers
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+ ```python
88
+ from sentence_transformers import SentenceTransformer
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SentenceTransformer("sentence_transformers_model_id")
92
+ # Run inference
93
+ sentences = [
94
+ 'Who: The A Method for Hiring by Geoff Smart and Randy Street',
95
+ 'Books on Communication',
96
+ 'Books on Artificial Intelligence',
97
+ ]
98
+ embeddings = model.encode(sentences)
99
+ print(embeddings.shape)
100
+ # [3, 768]
101
+
102
+ # Get the similarity scores for the embeddings
103
+ similarities = model.similarity(embeddings, embeddings)
104
+ print(similarities.shape)
105
+ # [3, 3]
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Dataset
147
+
148
+ #### csv
149
+
150
+ * Dataset: csv
151
+ * Size: 16,002 training samples
152
+ * Columns: <code>anchor</code> and <code>positive</code>
153
+ * Approximate statistics based on the first 1000 samples:
154
+ | | anchor | positive |
155
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
156
+ | type | string | string |
157
+ | details | <ul><li>min: 7 tokens</li><li>mean: 21.88 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 5.83 tokens</li><li>max: 9 tokens</li></ul> |
158
+ * Samples:
159
+ | anchor | positive |
160
+ |:-------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------|
161
+ | <code>Millionaire Success Habits: The Gateway to Wealth & Prosperity by Dean Graziosi</code> | <code>Books on Wealth</code> |
162
+ | <code>Thinking With Type: A Critical Guide For Designers, Writers, Editors, & Students by Ellen Lupton</code> | <code>Books on Graphic Design</code> |
163
+ | <code>The Happiest Baby on the Block: The New Way to Calm Crying and Help Your Newborn Baby Sleep Longer by Harvey Karp, M.D.</code> | <code>Books on Pregnancy</code> |
164
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
165
+ ```json
166
+ {
167
+ "scale": 20.0,
168
+ "similarity_fct": "cos_sim"
169
+ }
170
+ ```
171
+
172
+ ### Evaluation Dataset
173
+
174
+ #### csv
175
+
176
+ * Dataset: csv
177
+ * Size: 1,778 evaluation samples
178
+ * Columns: <code>anchor</code> and <code>positive</code>
179
+ * Approximate statistics based on the first 1000 samples:
180
+ | | anchor | positive |
181
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
182
+ | type | string | string |
183
+ | details | <ul><li>min: 7 tokens</li><li>mean: 21.99 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 5.79 tokens</li><li>max: 10 tokens</li></ul> |
184
+ * Samples:
185
+ | anchor | positive |
186
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------|
187
+ | <code>Crying in H Mart: A Memoir by Michelle Zauner</code> | <code>Books about Family</code> |
188
+ | <code>Starting a Successful Blog when You Have NO CLUE! by Gundi Gabrielle</code> | <code>Books on Content Creation</code> |
189
+ | <code>The XX Brain: The Groundbreaking Science Empowering Women to Maximize Cognitive Health and Prevent Alzheimer's Disease by Lisa Mosconi, Ph.D.</code> | <code>Books on Health</code> |
190
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
191
+ ```json
192
+ {
193
+ "scale": 20.0,
194
+ "similarity_fct": "cos_sim"
195
+ }
196
+ ```
197
+
198
+ ### Training Hyperparameters
199
+ #### Non-Default Hyperparameters
200
+
201
+ - `per_device_train_batch_size`: 16
202
+ - `per_device_eval_batch_size`: 16
203
+ - `learning_rate`: 2e-05
204
+ - `num_train_epochs`: 5
205
+ - `warmup_ratio`: 0.1
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: no
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 16
215
+ - `per_device_eval_batch_size`: 16
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `torch_empty_cache_steps`: None
221
+ - `learning_rate`: 2e-05
222
+ - `weight_decay`: 0.0
223
+ - `adam_beta1`: 0.9
224
+ - `adam_beta2`: 0.999
225
+ - `adam_epsilon`: 1e-08
226
+ - `max_grad_norm`: 1.0
227
+ - `num_train_epochs`: 5
228
+ - `max_steps`: -1
229
+ - `lr_scheduler_type`: linear
230
+ - `lr_scheduler_kwargs`: {}
231
+ - `warmup_ratio`: 0.1
232
+ - `warmup_steps`: 0
233
+ - `log_level`: passive
234
+ - `log_level_replica`: warning
235
+ - `log_on_each_node`: True
236
+ - `logging_nan_inf_filter`: True
237
+ - `save_safetensors`: True
238
+ - `save_on_each_node`: False
239
+ - `save_only_model`: False
240
+ - `restore_callback_states_from_checkpoint`: False
241
+ - `no_cuda`: False
242
+ - `use_cpu`: False
243
+ - `use_mps_device`: False
244
+ - `seed`: 42
245
+ - `data_seed`: None
246
+ - `jit_mode_eval`: False
247
+ - `use_ipex`: False
248
+ - `bf16`: False
249
+ - `fp16`: False
250
+ - `fp16_opt_level`: O1
251
+ - `half_precision_backend`: auto
252
+ - `bf16_full_eval`: False
253
+ - `fp16_full_eval`: False
254
+ - `tf32`: None
255
+ - `local_rank`: 0
256
+ - `ddp_backend`: None
257
+ - `tpu_num_cores`: None
258
+ - `tpu_metrics_debug`: False
259
+ - `debug`: []
260
+ - `dataloader_drop_last`: False
261
+ - `dataloader_num_workers`: 0
262
+ - `dataloader_prefetch_factor`: None
263
+ - `past_index`: -1
264
+ - `disable_tqdm`: False
265
+ - `remove_unused_columns`: True
266
+ - `label_names`: None
267
+ - `load_best_model_at_end`: False
268
+ - `ignore_data_skip`: False
269
+ - `fsdp`: []
270
+ - `fsdp_min_num_params`: 0
271
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: None
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `include_for_metrics`: []
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: proportional
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss |
328
+ |:------:|:----:|:-------------:|
329
+ | 0.0999 | 100 | 3.0908 |
330
+ | 0.1998 | 200 | 2.3816 |
331
+ | 0.2997 | 300 | 2.1439 |
332
+ | 0.3996 | 400 | 1.9773 |
333
+ | 0.4995 | 500 | 1.9802 |
334
+ | 0.5994 | 600 | 1.9266 |
335
+ | 0.6993 | 700 | 1.8154 |
336
+ | 0.7992 | 800 | 1.792 |
337
+ | 0.8991 | 900 | 1.7716 |
338
+ | 0.9990 | 1000 | 1.7447 |
339
+ | 1.0989 | 1100 | 1.6836 |
340
+ | 1.1988 | 1200 | 1.635 |
341
+ | 1.2987 | 1300 | 1.555 |
342
+ | 1.3986 | 1400 | 1.6318 |
343
+ | 1.4985 | 1500 | 1.6539 |
344
+ | 1.5984 | 1600 | 1.5797 |
345
+ | 1.6983 | 1700 | 1.5831 |
346
+ | 1.7982 | 1800 | 1.5727 |
347
+ | 1.8981 | 1900 | 1.5969 |
348
+ | 1.9980 | 2000 | 1.5202 |
349
+ | 2.0979 | 2100 | 1.4787 |
350
+ | 2.1978 | 2200 | 1.4702 |
351
+ | 2.2977 | 2300 | 1.4389 |
352
+ | 2.3976 | 2400 | 1.4196 |
353
+ | 2.4975 | 2500 | 1.4352 |
354
+ | 2.5974 | 2600 | 1.395 |
355
+ | 2.6973 | 2700 | 1.462 |
356
+ | 2.7972 | 2800 | 1.4439 |
357
+ | 2.8971 | 2900 | 1.4478 |
358
+ | 2.9970 | 3000 | 1.4617 |
359
+ | 3.0969 | 3100 | 1.3563 |
360
+ | 3.1968 | 3200 | 1.4004 |
361
+ | 3.2967 | 3300 | 1.3557 |
362
+ | 3.3966 | 3400 | 1.3226 |
363
+ | 3.4965 | 3500 | 1.3516 |
364
+ | 3.5964 | 3600 | 1.3219 |
365
+ | 3.6963 | 3700 | 1.4065 |
366
+ | 3.7962 | 3800 | 1.3987 |
367
+ | 3.8961 | 3900 | 1.3364 |
368
+ | 3.9960 | 4000 | 1.3198 |
369
+ | 4.0959 | 4100 | 1.2749 |
370
+ | 4.1958 | 4200 | 1.2973 |
371
+ | 4.2957 | 4300 | 1.2335 |
372
+ | 4.3956 | 4400 | 1.2816 |
373
+ | 4.4955 | 4500 | 1.2963 |
374
+ | 4.5954 | 4600 | 1.2932 |
375
+ | 4.6953 | 4700 | 1.2579 |
376
+ | 4.7952 | 4800 | 1.3312 |
377
+ | 4.8951 | 4900 | 1.262 |
378
+ | 4.9950 | 5000 | 1.3559 |
379
+
380
+
381
+ ### Framework Versions
382
+ - Python: 3.10.12
383
+ - Sentence Transformers: 4.1.0
384
+ - Transformers: 4.53.0.dev0
385
+ - PyTorch: 2.7.1+cu126
386
+ - Accelerate: 1.7.0
387
+ - Datasets: 3.6.0
388
+ - Tokenizers: 0.21.1
389
+
390
+ ## Citation
391
+
392
+ ### BibTeX
393
+
394
+ #### Sentence Transformers
395
+ ```bibtex
396
+ @inproceedings{reimers-2019-sentence-bert,
397
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
398
+ author = "Reimers, Nils and Gurevych, Iryna",
399
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
400
+ month = "11",
401
+ year = "2019",
402
+ publisher = "Association for Computational Linguistics",
403
+ url = "https://arxiv.org/abs/1908.10084",
404
+ }
405
+ ```
406
+
407
+ <!--
408
+ ## Glossary
409
+
410
+ *Clearly define terms in order to be accessible across audiences.*
411
+ -->
412
+
413
+ <!--
414
+ ## Model Card Authors
415
+
416
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
417
+ -->
418
+
419
+ <!--
420
+ ## Model Card Contact
421
+
422
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
423
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.0.dev0",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.53.0.dev0",
5
+ "pytorch": "2.7.1+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3530fdd97c949c0f9efa1f0ed51e53039cd313ef8fd2936f717593a3ff6c41f
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a18eff5b664d8f157a3ad9b8a30005d08cf9c585c1ae1891947228afaa84418
3
+ size 871332235
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c48dde672ed03e77e045d0c82330c6b3c2192c6cb466bff8ae450344c711c8a
3
+ size 14645
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab0d223a393f22ac34c1911f5e5be757f106a1d2c6c8a7bef5fb3ffd7decea9c
3
+ size 1465
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "model_max_length": 512,
60
+ "pad_token": "<pad>",
61
+ "sep_token": "</s>",
62
+ "strip_accents": null,
63
+ "tokenize_chinese_chars": true,
64
+ "tokenizer_class": "MPNetTokenizer",
65
+ "unk_token": "[UNK]"
66
+ }
trainer_state.json ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 5005,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0999000999000999,
14
+ "grad_norm": 8.842884063720703,
15
+ "learning_rate": 3.952095808383234e-06,
16
+ "loss": 3.0908,
17
+ "step": 100
18
+ },
19
+ {
20
+ "epoch": 0.1998001998001998,
21
+ "grad_norm": 19.580947875976562,
22
+ "learning_rate": 7.944111776447106e-06,
23
+ "loss": 2.3816,
24
+ "step": 200
25
+ },
26
+ {
27
+ "epoch": 0.2997002997002997,
28
+ "grad_norm": 17.492271423339844,
29
+ "learning_rate": 1.193612774451098e-05,
30
+ "loss": 2.1439,
31
+ "step": 300
32
+ },
33
+ {
34
+ "epoch": 0.3996003996003996,
35
+ "grad_norm": 17.586090087890625,
36
+ "learning_rate": 1.592814371257485e-05,
37
+ "loss": 1.9773,
38
+ "step": 400
39
+ },
40
+ {
41
+ "epoch": 0.4995004995004995,
42
+ "grad_norm": 15.372795104980469,
43
+ "learning_rate": 1.9920159680638723e-05,
44
+ "loss": 1.9802,
45
+ "step": 500
46
+ },
47
+ {
48
+ "epoch": 0.5994005994005994,
49
+ "grad_norm": 13.545052528381348,
50
+ "learning_rate": 1.9564831261101244e-05,
51
+ "loss": 1.9266,
52
+ "step": 600
53
+ },
54
+ {
55
+ "epoch": 0.6993006993006993,
56
+ "grad_norm": 14.97186279296875,
57
+ "learning_rate": 1.9120781527531086e-05,
58
+ "loss": 1.8154,
59
+ "step": 700
60
+ },
61
+ {
62
+ "epoch": 0.7992007992007992,
63
+ "grad_norm": 14.916701316833496,
64
+ "learning_rate": 1.8676731793960924e-05,
65
+ "loss": 1.792,
66
+ "step": 800
67
+ },
68
+ {
69
+ "epoch": 0.8991008991008991,
70
+ "grad_norm": 12.8872709274292,
71
+ "learning_rate": 1.8232682060390766e-05,
72
+ "loss": 1.7716,
73
+ "step": 900
74
+ },
75
+ {
76
+ "epoch": 0.999000999000999,
77
+ "grad_norm": 10.461772918701172,
78
+ "learning_rate": 1.7788632326820604e-05,
79
+ "loss": 1.7447,
80
+ "step": 1000
81
+ },
82
+ {
83
+ "epoch": 1.098901098901099,
84
+ "grad_norm": 11.06071662902832,
85
+ "learning_rate": 1.7344582593250445e-05,
86
+ "loss": 1.6836,
87
+ "step": 1100
88
+ },
89
+ {
90
+ "epoch": 1.1988011988011988,
91
+ "grad_norm": 13.601765632629395,
92
+ "learning_rate": 1.6900532859680287e-05,
93
+ "loss": 1.635,
94
+ "step": 1200
95
+ },
96
+ {
97
+ "epoch": 1.2987012987012987,
98
+ "grad_norm": 13.174976348876953,
99
+ "learning_rate": 1.6456483126110125e-05,
100
+ "loss": 1.555,
101
+ "step": 1300
102
+ },
103
+ {
104
+ "epoch": 1.3986013986013985,
105
+ "grad_norm": 16.08052635192871,
106
+ "learning_rate": 1.6012433392539967e-05,
107
+ "loss": 1.6318,
108
+ "step": 1400
109
+ },
110
+ {
111
+ "epoch": 1.4985014985014984,
112
+ "grad_norm": 15.495978355407715,
113
+ "learning_rate": 1.5568383658969805e-05,
114
+ "loss": 1.6539,
115
+ "step": 1500
116
+ },
117
+ {
118
+ "epoch": 1.5984015984015985,
119
+ "grad_norm": 11.14354133605957,
120
+ "learning_rate": 1.5124333925399647e-05,
121
+ "loss": 1.5797,
122
+ "step": 1600
123
+ },
124
+ {
125
+ "epoch": 1.6983016983016983,
126
+ "grad_norm": 10.451489448547363,
127
+ "learning_rate": 1.4680284191829486e-05,
128
+ "loss": 1.5831,
129
+ "step": 1700
130
+ },
131
+ {
132
+ "epoch": 1.7982017982017982,
133
+ "grad_norm": 12.40042781829834,
134
+ "learning_rate": 1.4236234458259326e-05,
135
+ "loss": 1.5727,
136
+ "step": 1800
137
+ },
138
+ {
139
+ "epoch": 1.8981018981018982,
140
+ "grad_norm": 13.592798233032227,
141
+ "learning_rate": 1.3792184724689166e-05,
142
+ "loss": 1.5969,
143
+ "step": 1900
144
+ },
145
+ {
146
+ "epoch": 1.9980019980019978,
147
+ "grad_norm": 12.129600524902344,
148
+ "learning_rate": 1.3348134991119006e-05,
149
+ "loss": 1.5202,
150
+ "step": 2000
151
+ },
152
+ {
153
+ "epoch": 2.097902097902098,
154
+ "grad_norm": 13.278411865234375,
155
+ "learning_rate": 1.2904085257548846e-05,
156
+ "loss": 1.4787,
157
+ "step": 2100
158
+ },
159
+ {
160
+ "epoch": 2.197802197802198,
161
+ "grad_norm": 11.896201133728027,
162
+ "learning_rate": 1.2460035523978686e-05,
163
+ "loss": 1.4702,
164
+ "step": 2200
165
+ },
166
+ {
167
+ "epoch": 2.2977022977022976,
168
+ "grad_norm": 12.858651161193848,
169
+ "learning_rate": 1.2015985790408526e-05,
170
+ "loss": 1.4389,
171
+ "step": 2300
172
+ },
173
+ {
174
+ "epoch": 2.3976023976023977,
175
+ "grad_norm": 11.218062400817871,
176
+ "learning_rate": 1.1571936056838366e-05,
177
+ "loss": 1.4196,
178
+ "step": 2400
179
+ },
180
+ {
181
+ "epoch": 2.4975024975024973,
182
+ "grad_norm": 12.738713264465332,
183
+ "learning_rate": 1.1127886323268207e-05,
184
+ "loss": 1.4352,
185
+ "step": 2500
186
+ },
187
+ {
188
+ "epoch": 2.5974025974025974,
189
+ "grad_norm": 11.351848602294922,
190
+ "learning_rate": 1.0683836589698047e-05,
191
+ "loss": 1.395,
192
+ "step": 2600
193
+ },
194
+ {
195
+ "epoch": 2.6973026973026974,
196
+ "grad_norm": 15.531521797180176,
197
+ "learning_rate": 1.0239786856127887e-05,
198
+ "loss": 1.462,
199
+ "step": 2700
200
+ },
201
+ {
202
+ "epoch": 2.797202797202797,
203
+ "grad_norm": 13.97511100769043,
204
+ "learning_rate": 9.795737122557727e-06,
205
+ "loss": 1.4439,
206
+ "step": 2800
207
+ },
208
+ {
209
+ "epoch": 2.897102897102897,
210
+ "grad_norm": 11.752087593078613,
211
+ "learning_rate": 9.351687388987567e-06,
212
+ "loss": 1.4478,
213
+ "step": 2900
214
+ },
215
+ {
216
+ "epoch": 2.9970029970029968,
217
+ "grad_norm": 10.799909591674805,
218
+ "learning_rate": 8.907637655417407e-06,
219
+ "loss": 1.4617,
220
+ "step": 3000
221
+ },
222
+ {
223
+ "epoch": 3.096903096903097,
224
+ "grad_norm": 13.04091739654541,
225
+ "learning_rate": 8.463587921847247e-06,
226
+ "loss": 1.3563,
227
+ "step": 3100
228
+ },
229
+ {
230
+ "epoch": 3.196803196803197,
231
+ "grad_norm": 8.328659057617188,
232
+ "learning_rate": 8.019538188277087e-06,
233
+ "loss": 1.4004,
234
+ "step": 3200
235
+ },
236
+ {
237
+ "epoch": 3.2967032967032965,
238
+ "grad_norm": 14.43315601348877,
239
+ "learning_rate": 7.575488454706927e-06,
240
+ "loss": 1.3557,
241
+ "step": 3300
242
+ },
243
+ {
244
+ "epoch": 3.3966033966033966,
245
+ "grad_norm": 11.241643905639648,
246
+ "learning_rate": 7.131438721136767e-06,
247
+ "loss": 1.3226,
248
+ "step": 3400
249
+ },
250
+ {
251
+ "epoch": 3.4965034965034967,
252
+ "grad_norm": 13.721736907958984,
253
+ "learning_rate": 6.687388987566608e-06,
254
+ "loss": 1.3516,
255
+ "step": 3500
256
+ },
257
+ {
258
+ "epoch": 3.5964035964035963,
259
+ "grad_norm": 9.1060791015625,
260
+ "learning_rate": 6.243339253996448e-06,
261
+ "loss": 1.3219,
262
+ "step": 3600
263
+ },
264
+ {
265
+ "epoch": 3.6963036963036964,
266
+ "grad_norm": 15.87879753112793,
267
+ "learning_rate": 5.799289520426288e-06,
268
+ "loss": 1.4065,
269
+ "step": 3700
270
+ },
271
+ {
272
+ "epoch": 3.7962037962037964,
273
+ "grad_norm": 15.852932929992676,
274
+ "learning_rate": 5.355239786856128e-06,
275
+ "loss": 1.3987,
276
+ "step": 3800
277
+ },
278
+ {
279
+ "epoch": 3.896103896103896,
280
+ "grad_norm": 14.717906951904297,
281
+ "learning_rate": 4.911190053285968e-06,
282
+ "loss": 1.3364,
283
+ "step": 3900
284
+ },
285
+ {
286
+ "epoch": 3.996003996003996,
287
+ "grad_norm": 12.673909187316895,
288
+ "learning_rate": 4.467140319715808e-06,
289
+ "loss": 1.3198,
290
+ "step": 4000
291
+ },
292
+ {
293
+ "epoch": 4.095904095904096,
294
+ "grad_norm": 14.972280502319336,
295
+ "learning_rate": 4.023090586145649e-06,
296
+ "loss": 1.2749,
297
+ "step": 4100
298
+ },
299
+ {
300
+ "epoch": 4.195804195804196,
301
+ "grad_norm": 14.906390190124512,
302
+ "learning_rate": 3.579040852575489e-06,
303
+ "loss": 1.2973,
304
+ "step": 4200
305
+ },
306
+ {
307
+ "epoch": 4.2957042957042955,
308
+ "grad_norm": 13.691140174865723,
309
+ "learning_rate": 3.134991119005329e-06,
310
+ "loss": 1.2335,
311
+ "step": 4300
312
+ },
313
+ {
314
+ "epoch": 4.395604395604396,
315
+ "grad_norm": 10.398210525512695,
316
+ "learning_rate": 2.690941385435169e-06,
317
+ "loss": 1.2816,
318
+ "step": 4400
319
+ },
320
+ {
321
+ "epoch": 4.495504495504496,
322
+ "grad_norm": 10.417113304138184,
323
+ "learning_rate": 2.246891651865009e-06,
324
+ "loss": 1.2963,
325
+ "step": 4500
326
+ },
327
+ {
328
+ "epoch": 4.595404595404595,
329
+ "grad_norm": 9.694279670715332,
330
+ "learning_rate": 1.8028419182948491e-06,
331
+ "loss": 1.2932,
332
+ "step": 4600
333
+ },
334
+ {
335
+ "epoch": 4.695304695304696,
336
+ "grad_norm": 9.184102058410645,
337
+ "learning_rate": 1.3587921847246892e-06,
338
+ "loss": 1.2579,
339
+ "step": 4700
340
+ },
341
+ {
342
+ "epoch": 4.795204795204795,
343
+ "grad_norm": 14.067358016967773,
344
+ "learning_rate": 9.147424511545295e-07,
345
+ "loss": 1.3312,
346
+ "step": 4800
347
+ },
348
+ {
349
+ "epoch": 4.895104895104895,
350
+ "grad_norm": 12.279874801635742,
351
+ "learning_rate": 4.706927175843695e-07,
352
+ "loss": 1.262,
353
+ "step": 4900
354
+ },
355
+ {
356
+ "epoch": 4.995004995004995,
357
+ "grad_norm": 16.635345458984375,
358
+ "learning_rate": 2.6642984014209594e-08,
359
+ "loss": 1.3559,
360
+ "step": 5000
361
+ }
362
+ ],
363
+ "logging_steps": 100,
364
+ "max_steps": 5005,
365
+ "num_input_tokens_seen": 0,
366
+ "num_train_epochs": 5,
367
+ "save_steps": 600,
368
+ "stateful_callbacks": {
369
+ "TrainerControl": {
370
+ "args": {
371
+ "should_epoch_stop": false,
372
+ "should_evaluate": false,
373
+ "should_log": false,
374
+ "should_save": true,
375
+ "should_training_stop": true
376
+ },
377
+ "attributes": {}
378
+ }
379
+ },
380
+ "total_flos": 0.0,
381
+ "train_batch_size": 16,
382
+ "trial_name": null,
383
+ "trial_params": null
384
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8c6dda4ac3c61c8dee69d41b2109cadfdc72b31128ff1e478c7ceb7f8f8c760
3
+ size 5969
vocab.txt ADDED
The diff for this file is too large to render. See raw diff